Augmenting data structures (BSTs)

We saw a clever way to find the i-th smallest element in a set in \(\Theta(n) \) time. With \(O(n\log n) \) pre-processing we can do this (dynamically) in \(O(\log n) \) time.
Augmenting Data Structures (BSTs)

We saw a clever way to find the i-th smallest element in a set in $\Theta(n)$-time. With $O(n \log n)$ pre-processing we can do this (dynamically) in $O(\log n)$ time. We can also ask for the rank of an element (dynamically) in $O(\log n)$ time.

Example:

RB-tree contains sorted letters

rank(M) = 6
rank(H) = 5
Augmenting Data Structures (BSTs)

We saw a clever way to find the i-th smallest element in a set in $\Theta(n)$ time. With $O(n \log n)$ pre-processing we can do this (dynamically) in $O(\log n)$ time.

We can also ask for the rank of an element (dynamically) in $O(\log n)$ time.

Example:

\[\begin{array}{c}
A & 1 \\
D & 1 \\
H & 1 \\
F & 3 \\
N & 1 \\
P & 3 \\
M & 9 \\
\end{array} \]

RB-tree contains sorted letters augmented with subtree sizes.
Select(x,i) \get i-th element in subtree rooted at x.

$k \leftarrow 1 + \text{size}(l_x)$ \ \leftarrow l_x : \text{left child of } x$.

if $i = k$, return x.
Select(x,i) \quad \text{get i-th element in subtree rooted at x.}

k \leftarrow 1 + \text{size}(l_x) \quad \text{\(l_x\): left child of x}

if \(i = k\), return x.

example: i=5 \quad \text{Select(root,5)}

k=6 \quad k \leftarrow 1 + 5
```
Select(x, i) \quad \text{get i-th element in subtree rooted at } x

k \leftarrow 1 + \text{size}(l_x) \quad \text{\(l_x\): left child of } x

\text{if } i = k, \text{ return } x.
\text{else if } i < k, \text{ return } \text{Select}(l_x, i)
```

example: \(i = 5\)

\[\text{Select(root, 5)} \]

\[k = 6 \quad k \leftarrow 1 + 5 \]
Select\((x, i) \) \hspace{1em} \text{get } i\text{-th element in subtree rooted at } x.

\[k \leftarrow 1 + \text{size}(l_x) \] \hspace{1em} \text{\(l_x \): left child of } x.

if \(i = k \), return \(x \).

else if \(i < k \), return Select\((l_x, i) \).

example: \(i = 5 \)

\[k = 6 \]

\[
\begin{align*}
&k \leftarrow 1 + 5 \\
&i < k \Rightarrow \text{Select}(c, 5)
\end{align*}
\]
Select(x,i) \get i-th element in subtree rooted at x.

$k \leftarrow 1 + \text{size}(l_x)$ \leftarrow \text{name of left child of} \ x

if $i = k$, return x.

else if $i < k$, return Select(l_x,i)

else ($i > k$) return Select($r_x,i-k$)

example: $i=5$

Select(root,5)

$k \leftarrow 1 + 5$

$i < k \Rightarrow \text{Select}(c,5)$
Select(x, i) \hspace{1em} \text{get i-th element in subtree rooted at x.}

\begin{align*}
k &\leftarrow 1 + \text{size(l_x)} \hspace{1em} \text{l_x: left child of x} \\
\text{if } i = k, & \text{ return } x. \\
\text{else if } i < k, & \text{ return } \text{Select(l_x, i)} \\
\text{else } (i > k), & \text{ return } \text{Select($r_x, i-k$)}
\end{align*}

\text{example: } i = 5

Select(root, 5)

\begin{align*}
k &\leftarrow 1 + 5 \\
i < k \Rightarrow & \text{ Select($c, 5$)} \\
k &\leftarrow 1 + 1 \\
i > k \Rightarrow & \text{ Select($f, 3$)}
\end{align*}
Select(x, i) // get i-th element in subtree rooted at x

$k \leftarrow 1 + \text{size}(l_x)$ // l_x: left child of x

if $i = k$, return x.
else if $i < k$, return Select(l_x, i)
else ($i > k$) return Select($r_x, i-k$)

def Select(root, i):
 k = 1 + i
 if $i < k$:
 $c = \text{Select}(c, 5)$
 k = 1 + 1
 if $i > k$:
 $h = \text{Select}(H, 1)$

example: $i = 5$

$k = 6$

$i = 5, k = 2$

$i = 3, k = 2$
Select\(x, i\) \quad \ll \text{get } i\text{-th element in subtree rooted at } x.

\[k \leftarrow 1 + \text{size}(l_x) \quad \ll \text{ } l_x : \text{left child of } x \]

- if \(i = k \), return \(x \).
- else if \(i < k \), return \(\text{Select}(l_x, i) \)
- else \(i > k \), return \(\text{Select}(r_x, i-k) \)

Example: \(i = 5 \)

\[k \leftarrow 1 + 5 \]

\[i < k \quad \Rightarrow \quad \text{Select}(c, 5) \]

\[k = 1 + 1 \]

\[i > k \quad \Rightarrow \quad \text{Select}(f, 3) \]

\[k = 1 + 1 \]

\[i > k \quad \Rightarrow \quad \text{Select}(h, 1) \]

\[k = 1 + 0 \]

\[i = k \quad \Rightarrow \quad \text{return } h \]
The balanced BST can be built in $\Theta(n \log n)$ time
The balanced BST can be built in $\Theta(n \log n)$ time

- Compute subtree sizes as you build
- Or
- Postorder walk after building
The balanced BST can be built in $\Theta(n\log n)$ time.

Compute subtree sizes as you build

or

postorder walk after building
The balanced BST can be built in $\Theta(n \log n)$ time

Compute subtree sizes as you build

or

postorder walk after building
The balanced BST can be built in $\Theta(n \log n)$ time

Compute subtree sizes as you build

or

postorder walk after building
The balanced BST can be built in $\Theta(n \log n)$ time

Compute subtree sizes as you build

or

postorder walk after building
The balanced BST can be built in $\Theta(n \log n)$ time.

Get rank: just as easy.

Walk up from node, adding sizes of subtrees representing smaller #'s.
The balanced BST can be built in $\Theta(n\log n)$ time.

Get rank: just as easy. Walk up from node, adding sizes of subtrees representing smaller #s.

ex: $\text{rank}(H) \rightarrow \text{size}(l_H) = 0$, walk up to F.
The balanced BST can be built in $\Theta(n \log n)$ time.

Get rank: just as easy.

Walk up from node, adding sizes of subtrees representing smaller #s.

ex: $\text{rank}(H) \rightarrow \text{size}(l_H) = 0$, walk up to F

H is right child of F, so count F.
The balanced BST can be built in $\Theta(n \log n)$ time

Get rank: just as easy.

Walk up from node, adding sizes of subtrees representing smaller #'s

ex: $\text{rank}(H) \rightarrow \text{size}(l_H) = 0$, walk up to F
H is right child of F, so count F.
$\text{size}(l_F) = 1 \rightarrow \text{sum} = 1 + 1$
The balanced BST can be built in $\Theta(n \log n)$ time.

Get rank: just as easy.

Walk up from node, adding sizes of subtrees representing smaller #s.

ex: $\text{rank}(H) \rightarrow \text{size}(l_H) = 0$, walk up to F.
F is right child of F, so count F.
$\text{size}(l_F) = 1 \implies \text{sum} = 1 + 1$.
Walk up to C, count it.
The balanced BST can be built in $\Theta(n \log n)$ time.

Get rank: just as easy.
Walk up from node, adding sizes of subtrees representing smaller #s.

ex: \(\text{rank}(H) \rightarrow \text{size}(l_H) = 0 \), walk up to F
H is right child of F, so count F.
size(\(l_F\)) = 1 \rightarrow \text{sum} = 1 + 1 \rightarrow \text{walk up to } C, \text{ count it.}
size(\(l_C\)) = 1 \rightarrow \text{increment sum by } 1
The balanced BST can be built in $\Theta(n \log n)$ time.

Get rank: just as easy.

Walk up from node, adding sizes of subtrees representing smaller #’s.

ex: $\text{rank}(H) \rightarrow \text{size}(l_H) = 0$, walk up to F.

F is right child of F, so count F.

$\text{size}(l_F) = 1 \rightarrow \text{sum} = 1 + 1$.

Walk up to C, count it.

$\text{size}(l_C) = 1 \rightarrow \text{increment sum by 1}.$

Walk up to M, don’t count it.

TOTAL = 5 (4+1 for H)
The balanced BST can be built in $\Theta(n \log n)$ time

Get rank: just as easy.
Walk up from node, adding sizes of subtrees representing smaller #’s

ex: $\text{rank}(H) \rightarrow \text{size}(l_H) = 0$, walk up to F
H is right child of F, so count F.
$\text{size}(l_F) = 1$ … sum = 1 + 1
walk up to C, count it.
$\text{size}(l_C) = 1$ … increment sum by 1
walk up to M, don’t count it.

TOTAL = 5 \quad (4 + 1 \text{ for } H)$
The balanced BST can be built in $\Theta(n \log n)$ time.

Get rank: just as easy.
Walk up from node, adding sizes of subtrees representing smaller #s.

ex: $\text{rank}(H) \rightarrow \text{size}(l_H) = 0$, walk up to F.
H is right child of F, so count F.
$\text{size}(l_F) = 1$... sum = 1 + 1
walk up to C, count it.
$\text{size}(l_C) = 1$... increment sum by 1
walk up to M, don't count it.

$\text{TOTAL} = 5$ (4+1 for H)
What if we stored ranks instead of tree sizes?
What if we stored ranks instead of tree sizes?

\[\implies \text{retrieve rank} = \Theta(1) \text{ time} \]
What if we stored ranks instead of tree sizes?

\(\rightarrow \) retrieve rank = \(\Theta(1) \) time
update = \(O(n) \) ... no good.
So we can search in $O(\log n)$ time, but what about insertion?

Easy to update tree sizes as we insert new node.

...but...
So we can search in $O(\log n)$ time, but what about insertion?

Easy to update tree sizes as we insert new node.
But we have to rebalance.
Can we update subtree sizes when inserting/deleting data?
Can we update subtree sizes when inserting/deleting data?

Use a RB tree

→ when are subtree sizes affected?
Can we update subtree sizes when inserting/deleting data?

Use a RB tree

→ when are subtree sizes affected? Rotations
So we can search in $O(\log n)$ time, but what about insertion?

Easy to update tree sizes as we insert new node.
But we have to rebalance.

In a RB tree, coloring doesn't affect tree sizes.

Rotations matter.

\[
\begin{align*}
\text{TOTAL: } & O(\log n) \\
\end{align*}
\]