Resolving collisions w/ open addressing assuming $n \leq m$
Resolving Collisions w/ Open Addressing assuming \(n \leq m \)

The point is to avoid auxiliary linked lists. Use that space for table.
Resolving Collisions w/ Open Addressing assuming \(n \leq m \)

The point is to avoid auxiliary linked lists. Use that space for table.
Instead, create a probe sequence as a function of key value.

\[\rightarrow \text{permutation of slots to try.} \]
Resolving collisions w/ open addressing assuming $n \leq m$

The point is to avoid auxiliary linked lists. Use that space for table. Instead, create a probe sequence as a function of key value. → permutation of slots to try.

ex: $h(64) \rightarrow 9, 2, 4, 8, 1, 3, 11, 7, 10, 5, 6.$
Resolving collisions with open addressing assuming \(n \leq m \)

The point is to avoid auxilliary linked lists. Use that space for table. Instead, create a probe sequence as a function of key value.

\[\text{permuation of slots to try.} \]

\[
\begin{array}{c}
1 \quad 36 \\
2 \quad 43 \\
3 \quad 78 \\
4 \quad 5 \\
5 \quad 103 \\
6 \quad 2014 \\
7 \\
8 \\
9 \\
10 \\
11 \\
\end{array}
\]

ex: \(h(64) \rightarrow 9, 2, 4, 8, 1, 3, 11, 7, 10, 5, 6. \)

Insert(64): Try \(T[9] \): full
Resolving collisions w/ open addressing assuming $n \leq m$

The point is to avoid auxiliary linked lists. Use that space for table. Instead, create a probe sequence as a function of key value.

\rightarrow permutation of slots to try.

ex: $h(64) \rightarrow 9, 2, 4, 8, 1, 3, 11, 7, 10, 5, 6.$

Insert(64):
- Try $T[9]$: full
Resolving collisions w/ open addressing assuming \(n < m \)

The point is to avoid auxiliary linked lists. Use that space for table. Instead, create a probe sequence as a function of key value. A permutation of slots to try.

Example: \(h(64) \rightarrow 9, 2, 4, 8, 1, 3, 11, 7, 10, 5, 6 \).

Insert(64):
- Try \(T[9] \): full
- Try \(T[2] \): full
- Try \(T[4] \): full
Resolving collisions w/ open addressing assuming \(n \leq m \)

The point is to avoid auxiliary linked lists. Use that space for table. Instead, create a probe sequence as a function of key value. \(\rightarrow \) permutation of slots to try.

Ex: \(h(64) \rightarrow 9, 2, 4, 8, 1, 3, 11, 7, 10, 5, 6 \).

Insert(64):
- Try \(T[9] \): full
- Try \(T[2] \): full
- Try \(T[4] \): full
- Try \(T[8] \): ok
Resolving collisions w/ open addressing assuming $n \leq m$

The point is to avoid auxiliary linked lists. Use that space for table. Instead, create a probe sequence as a function of key value. \(\rightarrow \) permutation of slots to try.

\[
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
36 & 43 & 78 & 5 & 103 & & & \\
\end{array}
\]

\[
\text{ex: } h(64) \rightarrow 9, 2, 4, 8, 1, 3, 11, 7, 10, 5, 6.
\]

Insert(64):

- Try T[9]: full
- Try T[2]: full
- Try T[4]: full
- Try T[8]: ok

Search(64) follows same sequence. Would return "not found" after 4 attempts.
ex: $h(64) \rightarrow 9, 2, 4, 8, 1, 3, 11, 7, 10, 5, 6$.

Really this is $h(k, i)$.
ex: $h(64) \rightarrow 9, 2, 4, 8, 1, 3, 11, 7, 10, 5, 6.$

Really this is $h(k, i)$

$h(64, 1) = 9$
ex: $h(64) \rightarrow 9, 2, 4, 8, 1, 3, 11, 7, 10, 5, 6.$

Really this is $h(k, i)$

$h(64, 1) = 9$ / $h(64, 2) = 2$
ex: $h(64) \rightarrow 9, 2, 4, 8, 1, 3, 11, 7, 10, 5, 6.$

Really this is $h(k, i)$

$h(64, 1) = 9$ / $h(64, 2) = 2$ / $h(64, 3) = 4$ / etc
Example: $h(64) \rightarrow 9, 2, 4, 8, 1, 3, 11, 7, 10, 5, 6.$

Really this is $h(k, i)$:

- $h(64, 1) = 9$
- $h(64, 2) = 2$
- $h(64, 3) = 4$

```
1 36
  43
2
3
4 78
5
6
7 103
8 64
  2014
9
10
11
```

Delete(64): ?
ex: $h(64) \rightarrow 9, 2, 4, 8, 1, 3, 11, 7, 10, 5, 6.$

Really this is $h(k, i)$

$h(64, 1) = 9 / h(64, 2) = 2 / h(64, 3) = 4 / etc$

Delete(64) : $h(64, 1) = 9$, occupied by 2014
$h(64) \rightarrow 9, 2, 4, 8, 1, 3, 11, 7, 10, 5, 6.$

Really this is $h(k, i)$:

$h(64, 1) = 9$
$h(64, 2) = 2$
$h(64, 3) = 4$

Delete(64):
$h(64, 1) = 9$, occupied by 2014
$h(64, 2) = 2$, occupied by 43
ex: $h(64) \rightarrow 9, 2, 4, 8, 1, 3, 11, 7, 10, 5, 6.$

Really this is $h(k, i)$

$h(64, 1) = 9$ / $h(64, 2) = 2$ / $h(64, 3) = 4$ / etc.

Delete(64):

$h(64, 1) = 9$, occupied by 2014
$h(64, 2) = 2$, occupied by 43
$h(64, 3) = 4$, occupied by 78
ex: $h(64) \rightarrow 9, 2, 4, 8, 1, 3, 11, 7, 10, 5, 6$.

Really this is $h(k, i)$

$h(64, 1) = 9$ / $h(64, 2) = 2$ / $h(64, 3) = 4$ / etc

Delete(64):

$h(64, 1) = 9$, occupied by 2014
$h(64, 2) = 2$, occupied by 43
$h(64, 3) = 4$, occupied by 78
$h(64, 4) = 8$, found 64, DELETE IT.

OK?
ex: \(h(64) \rightarrow 9, 2, 4, 8, 1, 3, 11, 7, 10, 5, 6. \)

Really this is \(h(k, i) \)

\[
\begin{align*}
h(64, 1) &= 9 & h(64, 2) &= 2 & h(64, 3) &= 4 \quad \text{etc.}
\end{align*}
\]

Delete(64): \(h(64, 1) = 9 \), occupied by 2014

\[
\begin{align*}
h(64, 2) &= 2 \quad , \text{occupied by} & 4 \quad 3
\end{align*}
\]

\[
\begin{align*}
h(64, 3) &= 4 \quad , \text{occupied by} & 7 \quad 8
\end{align*}
\]

\[
\begin{align*}
h(64, 4) &= 8 \quad , \text{found 64, DELETE IT.}
\end{align*}
\]

what if \(h(103) \rightarrow 4, 8, 2, 7, 1, 10, 11, 3, 5, 9, 6 \) ?
ex: $h(64) \rightarrow 9, 2, 4, 8, 1, 3, 11, 7, 10, 5, 6$.

Really this is $h(k, i)$

$\begin{align*}
 h(64, 1) &= 9, & h(64, 2) &= 2, & h(64, 3) &= 4, & \text{etc.}
\end{align*}$

Delete(64):

- $h(64, 1) = 9$, occupied by 2014
- $h(64, 2) = 2$, occupied by 43
- $h(64, 3) = 4$, occupied by 78
- $h(64, 4) = 8$, found 64, DELETE IT.

what if $h(103) \rightarrow 4, 8, 2, 7, 1, 10, 11, 3, 5, 9, 6$?

Search(103):

- $h(103, 1) = 4$, occupied by 78
ex: $h(64) \rightarrow 9, 2, 4, 8, 1, 3, 11, 7, 10, 5, 6$.
Really this is $h(k, i)$

$h(64, 1) = 9$ / $h(64, 2) = 2$ / $h(64, 3) = 4$ / etc.

Delete(64):

- $h(64, 1) = 9$, occupied by 2014
- $h(64, 2) = 2$, occupied by 43
- $h(64, 3) = 4$, occupied by 78
- $h(64, 4) = 8$, found 64, DELETE IT.

What if $h(103) \rightarrow 4, 8, 2, 7, 1, 10, 11, 3, 5, 9, 6$?

Search(103):

- $h(103, 1) = 4$, occupied by 78
- $h(103, 2) = 8$, empty: declare 103 not in T.
ex: \(h(64) \rightarrow 9, 2, 4, 8, 1, 3, 11, 7, 10, 5, 6. \)

Really this is \(h(k, i) \)

\[
\begin{align*}
h(64, 1) &= 9 / h(64, 2) = 2 / h(64, 3) = 4 / \ldots
\end{align*}
\]

Delete(64):

\[
\begin{align*}
h(64, 1) &= 9, \text{ occupied by } 2014 \\
h(64, 2) &= 2, \text{ occupied by } 43 \\
h(64, 3) &= 4, \text{ occupied by } 78 \\
h(64, 4) &= 8, \text{ found 64, DELETE IT.}
\end{align*}
\]

what if \(h(103) \rightarrow 4, 8, 2, 7, 1, 10, 11, 3, 5, 9, 6 \)?

Search(103):

\[
\begin{align*}
h(103, 1) &= 4, \text{ occupied by } 78 \\
h(103, 2) &= 8, \text{ empty: declare 103 not in T.}
\end{align*}
\]

Could use special "deleted" markers, but search time increases.
Typical probing sequences
Typical probing sequences

Linear probing : \(h(k, i) = (h(k, 0) + i) \mod m \)
Typical probing sequences

Linear probing: \(h(k, i) = (h(k, 0) + i) \mod m \sim h(k) \) and wrap around.
Typical probing sequences

Linear probing: \(h(k,i) = (h(k,0) + i) \mod m \Rightarrow h(k) \) and wrap around.

...tends to generate clusters.

\[
\text{probability of extending a cluster} = \frac{|\text{cluster}|}{m}
\]

slows down search
Typical probing sequences

Linear probing: \(h(k,i) = (h(k,0) + i) \mod m \) tends to generate clusters.

\(\sim h(k) \) and wrap around.
Typical probing sequences

Linear probing: \(h(k, i) = (h(k, 0) + i) \mod m \) \(\sim h(k) \) and wrap around.

...tends to generate clusters.

Quadratic probing: \(h(k, i) = (h(k, 0) + c \cdot i + d \cdot i^2) \mod m \)
Typical probing sequences

Linear probing: \(h(k, i) = (h(k, 0) + i) \mod m \) \(\sim h(k) \) and wrap around.

...tends to generate clusters.

Quadratic probing: \(h(k, i) = (h(k, 0) + c \cdot i + d \cdot i^2) \mod m \)

linear \(\sim \) make it look more random
Typical probing sequences

Linear probing: $h(k,i) = (h(k,0) + i) \mod m$ \quad \sim \quad h(k)$ and wrap around.

... tends to generate clusters.

Quadratic probing: $h(k,i) = (h(k,0) + c \cdot i + d \cdot i^2) \mod m$

Less clustering, need to make sure sequence hits all slots.
Typical probing sequences

Linear probing: \[h(k,i) = (h(k,0) + i) \mod m \] \(\sim h(k) \) and wrap around.

... tends to generate clusters.

Quadratic probing: \[h(k,i) = (h(k,0) + c \cdot i + d \cdot i^2) \mod m \]

Less clustering, need to make sure sequence hits all slots

Both generate \(m \) probe sequences in total
Typical probing sequences

Linear probing: \(h(k, i) = (h(k, 0) + i) \mod m \) \(\sim h(k) \) and wrap around.

... tends to generate clusters.

Quadratic probing: \(h(k, i) = (h(k, 0) + c \cdot i + d \cdot i^2) \mod m \)

Make it look more random

Less clustering, need to make sure sequence hits all slots

Both generate \(m \) probe sequences in total

Double hashing: \(h(k, i) = (h_1(k) + i \cdot h_2(k)) \mod m \)
Typical probing sequences

Linear probing: \(h(k, i) = (h(k, 0) + i) \mod m \sim h(k) \) and wrap around.

... tends to generate clusters.

Quadratic probing: \(h(k, i) = (h(k, 0) + c \cdot i + d \cdot i^2) \mod m \)

Less clustering, need to make sure sequence hits all slots

Both generate \(m \) probe sequences in total

Double hashing: \(h(k, i) = (h_1(k) + i \cdot h_2(k)) \mod m \)

Each \(k \) has "random" offset
Typical probing sequences

- **Linear probing**: \(h(k,i) = (h(k,0) + i) \mod m \) ~ \(h(k) \) and wrap around.
 ... tends to generate clusters.

- **Quadratic probing**: \(h(k,i) = (h(k,0) + c \cdot i + d \cdot i^2) \mod m \)
 Less clustering, need to make sure sequence hits all slots
 Linear make it look more random

\[\Rightarrow \text{Both generate m probe sequences in total} \]

- **Double hashing**: \(h(k,i) = (h_1(k) + i \cdot h_2(k)) \mod m \)
 Each \(k \) has "random" offset

Generates \(O(m^2) \) probe sequences: better
Typical probing sequences

Linear probing: \(h(k,i) = (h(k,0) + i) \mod m \) \(\sim h(k) \) and wrap around.

... tends to generate clusters.

Quadratic probing: \(h(k,i) = (h(k,0) + c \cdot i + d \cdot i^2) \mod m \)

Less clustering, need to make sure sequence hits all slots

→ Both generate m probe sequences in total

Double hashing: \(h(k,i) = (h_1(k) + i \cdot h_2(k)) \mod m \)

Each k has "random" offset

Generates \(O(m^2) \) probe sequences: better

Heuristic: choose \(m = 2^r \) & \(h_2(k) \) : odd.
Analysis of open addressing
Analysis of Open Addressing

Assuming Uniform Hashing: each key is equally likely to have any of the $m!$ permutations as probe sequence (independent of other keys)

For a random h, every slot is equally likely
Analysis of open addressing

Assuming uniform hashing: each key is equally likely to have any of the \(m! \) permutations as probe sequence (independent of other keys)

Even though all we have so far is \(O(m^2) \)

Simple uniform hashing

For a random \(h \), every slot is equally likely
Analysis of open addressing

Assuming uniform hashing: each key is equally likely to have any of the \(m! \) permutations as probe sequence (independent of other keys)

Recall \(n < m \), so \(\alpha < 1 \). Claim: \(E[\text{#probes}] \leq \frac{1}{1-\alpha} \left(\frac{m}{m-n} \right) \) (search)
Analysis of open addressing

Assuming uniform hashing: each key is equally likely to have any of the \(m! \) permutations as probe sequence (independent of other keys)

Recall \(n < m \), so \(\alpha < 1 \). Claim: \(E[\#\text{probes}] \leq \frac{1}{1-\alpha} \left(\frac{m}{m-n} \right) \) (search)

If true, then for \(n \ll m \) \(E[\#\text{probes}] = O(1) \)
Analysis of open addressing

Assuming uniform hashing: Each key is equally likely to have any of the $m!$ permutations as probe sequence (independent of other keys).

Recall $n < m$, so $\alpha < 1$. Claim: $E[\# \text{probes}] \leq \frac{1}{1-\alpha} \left(\frac{m}{m-n} \right)$ (search)

If true, then for $n \ll m \quad E[\# \text{probes}] = O(1)$

$\Rightarrow n = \frac{1}{2} m \rightarrow 2 \text{ probes}$

$\Rightarrow 90\% \text{ full table} \rightarrow 10 \text{ probes}$
ANALYSIS OF OPEN ADDRESSING

ASSUMING UNIFORM HASHING: each key is equally likely to have any of the m! permutations as probe sequence (independent of other keys).

Recall n < m, so \(\alpha < 1 \).

Claim: \(E[\# \text{probes}] \leq \frac{1}{1-\alpha} \left(\frac{m}{m-n} \right) \) (search)

If true, then for \(n \ll m \) \(E[\#\text{probes}] = O(1) \)

\(\therefore n = \frac{1}{2} m \rightarrow 2 \) probes

\(\therefore 90\% \text{ full table} \rightarrow 10 \) probes

Works well if you can afford a table \(\sim \text{data} \times 2 \)
Claim: \(E[\#\text{probes}] \leq \frac{1}{1-\alpha} \)

Look at unsuccessful search
Claim: $E[\#\text{probes}] \leq \frac{1}{1-\alpha}$

Look at unsuccessful search

Remember, probe sequence is a permutation.
Never check one slot twice.
Claim: \(E[\# \text{probes}] \leq \frac{1}{1 - \alpha} \)

Look at unsuccessful search

\[P[\text{1st probe collides}] = \frac{n}{m} \]

Remember, probe sequence is a permutation. Never check one slot twice.
Claim: $E[\#\text{probes}] \leq \frac{1}{1 - \alpha}$

$P[\text{1st probe collides}] = \frac{n}{m} \rightarrow \text{need 2nd probe}$

Look at unsuccessful search

Remember, probe sequence is a permutation. Never check one slot twice.
Claim: $E[\#\text{probes}] \leq \frac{1}{1-\alpha}$

Look at unsuccessful search

$P[1\text{st probe collides}] = \frac{n}{m} \rightarrow \text{need 2nd probe}$

$P[2\text{nd probe collides}] = \frac{n-1}{m-1} \rightarrow \text{need 3rd probe}$

Remember, probe sequence is a permutation.
Never check one slot twice.
Claim: \(E[\text{#probes}] \leq \frac{1}{1-\alpha} \)

- \(P[\text{1st probe collides}] = \frac{n}{m} \rightarrow \text{need 2nd probe} \)
- \(P[\text{2nd probe collides}] = \frac{n-i}{m-1} \rightarrow \text{need 3rd probe} \)

\[\vdots \]
- \(P[\text{ith probe collides}] = \frac{n-i}{m-i} \)

Look at unsuccessful search

Remember, probe sequence is a permutation.
Never check one slot twice.
Claim: \(E[\#\text{probes}] \leq \frac{1}{1-\alpha} \)

Look at unsuccessful search

\[
P[1\text{st probe collides}] = \frac{n}{m} \quad \rightarrow \text{need 2nd probe}
\]

\[
P[2\text{nd probe collides}] = \frac{n-i}{m-1} \quad \rightarrow \text{need 3rd probe}
\]

\[
\vdots
\]

\[
\frac{n-i}{m-i} \quad < \quad \frac{n}{m} = \alpha
\]

Remember, probe sequence is a permutation.
Never check one slot twice.
Claim: $E[\#\text{probes}] \leq \frac{1}{1-\alpha}$

Look at unsuccessful search

* $P[\text{1st probe collides}] = \frac{n}{m} \rightarrow \text{need 2nd probe}$

* $P[\text{2nd probe collides}] = \frac{n-i}{m-1} \rightarrow \text{need 3rd probe}$

\[\vdots \]

* $\frac{n-i}{m-i} < \frac{n}{m} = \alpha$

$E[\#\text{probes}] = 1 + \frac{n}{m} \left(\text{need at least a 2nd probe} \right)$

↑

Remember, probe sequence is a permutation.
Never check one slot twice.
Claim: \(E[\text{#probes}] \leq \frac{1}{1-\alpha} \)

Look at unsuccessful search

\[
P[\text{1st probe collides}] = \frac{n}{m} \quad \rightarrow \quad \text{need 2nd probe}
\]

\[
P[\text{2nd probe collides}] = \frac{n-1}{m-1} \quad \rightarrow \quad \text{need 3rd probe}
\]

\[
\vdots
\]

\[
\frac{n-i}{m-i} < \frac{n}{m} = \alpha
\]

\[
E[\text{#probes}] = 1 + \frac{n}{m} \left(1 + \frac{n-1}{m-1} \right) \quad \text{(need a 3rd probe)}
\]
Claim: \(E[\#\text{probes}] \leq \frac{1}{1-\alpha} \)

Look at unsuccessful search

\[
P[1\text{st probe collides}] = \frac{n}{m} \quad \rightarrow \quad \text{need 2nd probe}
\]

\[
P[2\text{nd probe collides}] = \frac{n-1}{m-1} \quad \rightarrow \quad \text{need 3rd probe}
\]

\[
\vdots
\]

\[
\frac{n-i}{m-i} < \frac{n}{m} = \alpha
\]

\[
E[\#\text{probes}] = 1 + \frac{n}{m} \left(1 + \frac{n-1}{m-1} \left(1 + \frac{n-2}{m-2} \left(\ldots \right) \right) \right)
\]

Remember, probe sequence is a permutation. Never check one slot twice.
Claim: $E[\# \text{probes}] \leq \frac{1}{1-\alpha}$

Look at unsuccessful search

$P[1\text{st\ probe\ collides}] = \frac{n}{m} \rightarrow \text{need 2nd probe}$

$P[2\text{nd\ probe\ collides}] = \frac{n-1}{m-1} \rightarrow \text{need 3rd probe}$

\vdots

$\frac{n-i}{m-i} < \frac{n}{m} = \alpha$

Remember, probe sequence is a permutation. Never check one slot twice.

$E[\# \text{probes}] = 1 + \frac{n}{m} \left(1 + \frac{n-1}{m-1} \left(1 + \frac{n-2}{m-2} \left(\ldots (1 + \frac{1}{m-n}) \right) \right) \right)$
Claim: $E[\#\text{probes}] \leq \frac{1}{1-\alpha}$

Look at unsuccessful search

$P[\text{1st probe collides}] = \frac{n}{m} \quad \rightarrow \quad \text{need 2nd probe}$

$P[\text{2nd probe collides}] = \frac{n-1}{m-1} \quad \rightarrow \quad \text{need 3rd probe}$

\[\vdots \]

$\frac{n-i}{m-i} \quad \leq \quad \frac{n}{m} = \alpha$

$E[\#\text{probes}] = 1 + \frac{n}{m} \left(1 + \frac{n-1}{m-1} \left(1 + \frac{n-2}{m-2} \left(\cdots \left(1 + \frac{1}{m-n} \right) \right) \right) \right)$

\[\leq 1 + \alpha \left(1 + \alpha \left(1 + \alpha \left(\cdots \left(1 + \alpha \right) \right) \right) \right) \quad \ldots \quad n \text{ terms} \]
Claim: $E[\#\text{probes}] \leq \frac{1}{1-\alpha}$

Look at unsuccessful search

$P[1\text{st probe collides}] = \frac{n}{m} \rightarrow \text{need 2nd probe}$

$P[2\text{nd probe collides}] = \frac{n-1}{m-1} \rightarrow \text{need 3rd probe}$

\[\vdots \]

$\frac{n-i}{m-i} < \frac{n}{m} = \alpha$

Remember, probe sequence is a permutation.
Never check one slot twice.

$E[\#\text{probes}] = 1 + \frac{n}{m} \left(1 + \frac{n-1}{m-1} \left(1 + \frac{n-2}{m-2} \left(\cdots \left(1 + \frac{1}{m-n}\right)\right)\right)\right)$

$\leq 1 + \alpha \left(1 + \alpha \left(1 + \alpha \left(\cdots \left(1 + \alpha \right)\right)\right)\right)$ \hspace{1cm} \ldots \text{n terms}$

$\leq 1 + \alpha + \alpha^2 + \alpha^3 + \cdots \hspace{1cm} \ldots \ldots \alpha \text{ terms}$
Claim: $E[\#\text{probes}] \leq \frac{1}{1-\alpha}$

Look at unsuccessful search

$P[1\text{st probe collides}] = \frac{n}{m} \rightarrow \text{need 2nd probe}$

$P[2\text{nd probe collides}] = \frac{n-1}{m-1} \rightarrow \text{need 3rd probe}$

\vdots

$\frac{n-i}{m-i} < \frac{n}{m} = \alpha$

$E[\#\text{probes}] = 1 + \frac{n}{m} \left(1 + \frac{n-1}{m-1} \left(1 + \frac{n-2}{m-2} \left(\ldots \left(1 + \frac{1}{m-n} \right) \right) \right) \right)$

$\leq 1 + \alpha \left(1 + \alpha \left(1 + \alpha \left(\ldots \left(1 + \alpha \right) \right) \right) \right) \ldots \text{n terms}$

$\leq 1 + \alpha + \alpha^2 + \alpha^3 + \ldots \ldots \text{\infty terms}$

$= \sum_{i=0}^{\infty} \alpha^i$
Claim: $\mathbb{E}[\#\text{probes}] \leq \frac{1}{1-\alpha}$

Look at unsuccessful search

\[
P[1\text{st probe collides}] = \frac{n}{m} \quad \rightarrow \text{need 2nd probe}
\]

\[
P[2\text{nd probe collides}] = \frac{n-1}{m-1} \quad \rightarrow \text{need 3rd probe}
\]

\[\vdots\]

\[
\frac{n-i}{m-i} \leq \frac{n}{m} = \alpha
\]

\[
\mathbb{E}[\#\text{probes}] = 1 + \frac{n}{m} \left(1 + \frac{n-1}{m-1} \left(1 + \frac{n-2}{m-2} \left(\cdots (1 + \frac{1}{m-n}) \right) \right) \right)
\]

\[\leq 1 + \alpha \left(1 + \alpha \left(1 + \alpha \left(\cdots (1 + \alpha) \right) \right) \right) \quad \cdots \text{\(n\) terms}
\]

\[\leq 1 + \alpha + \alpha^2 + \alpha^3 + \cdots \quad \cdots \infty \text{ terms}
\]

\[
= \sum_{i=0}^{\infty} \alpha^i = \frac{1}{1-\alpha}
\]

Remember, probe sequence is a permutation. Never check one slot twice.

See CLRS for alternate analysis incl. successful search.