SINGLE SOURCE SHORTEST PATHS

paths from s to t

$3 + 2 + 1 + 20$
SINGLE SOURCE SHORTEST PATHS

paths from \(s \) to \(t \)

\[3 + 2 + 1 + 20 \]

\[3 + 2 + 4 + 15 \]

not greedy or BFS

although this is an extension of BFS (weights = 1)
SINGLE SOURCE SHORTEST PATHS

paths from s to t

$3 + 2 + 1 + 20$

$3 + 2 + 4 + 15$

$3 + 2 + 4 + 5 + 8 = 22$

not greedy or BFS

tot. length of path from s
SINGLE SOURCE SHORTEST PATHS

paths from s to t

\[3 + 2 + 1 + 20 \]
\[3 + 2 + 4 + 15 \]
\[3 + 2 + 4 + 5 + 8 = 22 \]

multiple options

\[\frac{5}{5} + 1 + \cdots \]
\[+ 4 + \cdots = 22 \]

Generally assume a directed graph (can make undirected→directed easily)

disconnected from s

not greedy or BFS
SINGLE SOURCE SHORTEST PATHS

Observations
- No cycles in $s \rightarrow t$ (shortest path)

assumption?
SINGLE SOURCE SHORTEST PATHS

Observations
- No cycles in \(s \rightarrow t \)
- Negative weights \(\sim \) OK, unless they form a negative cycle in \(G \)

Any vertex reachable from a negative cycle gets a score of \(-\infty\)

\(\{ \) assuming cycle can be reached from \(s \) \(\} \)
SINGLE SOURCE SHORTEST PATHS

Observations
- No cycles in $s \rightarrow t$
- Negative weights are OK, unless they form a negative cycle in G

Any vertex reachable from a negative cycle gets a score of $-\infty$
Observations

- No cycles in $s \rightarrow t$
- Negative weights are OK, unless they form a negative cycle in G
- Shortest path $s \rightarrow v \rightarrow t$ contains
 - Shortest path $s \rightarrow v$ (9)
 - Shortest path $v \rightarrow t$ (13)
to any vertex t

there may be multiple shortest paths

e.g. $s \rightarrow t$ or $s \rightarrow x \rightarrow y \rightarrow t$
to any vertex \(t \)

there may be multiple shortest paths

\(e.g. \ s \to t \text{ or } s \to x \to y \to t \)

All shortest paths from \(s \) to \(V \) can be represented in a DAG

\(\text{DAG} \to \text{tree} : \text{arbitrarily keep one path to each vertex} \)

"shortest paths tree"

(similar to picking one BFS/DFS search)
By exploring some path from s to t we get a path score (e.g. 26) the score of t is 26, which may only decrease as we explore more options.

If we find the score of v: $d(v)$ & \exists edge $v \rightarrow t$

then we can possibly improve $d(t)$:

$$d(v) + w(v, t) < d(t)$$

(15)
By exploring some path from \(s \) to \(t \) we get a path score (e.g., 26) the score of \(t \) is 26, which may only decrease as we explore more options.

If we find the score of \(v \) \(d(v) \) & \(\exists \) edge \(v \rightarrow t \) then we can possibly improve \(d(t) \):

\[
d(v) + w(v, t) < d(t) ?
\]

Could also improve \(d(t) \) if the score of one of its ancestors improves
By exploring some path from \(s \) to \(t \) we get a path score (e.g. 26) the score of \(t \) is 26, which may only decrease as we explore more options.

If we find the score of \(v \) \(d(v) \) & \(\exists \) edge \(v \rightarrow t \) then we can possibly improve \(d(t) \):

\[
d(v) + w(v, t) < d(t)\]

Could also improve \(d(t) \) if the score of one of its ancestors improves
By exploring some path from s to t we get a path score (e.g. 26) the score of t is 26, which may only decrease as we explore more options.

If we find the score of v $d(v)$ & \exists edge $v \rightarrow t$
then we can possibly improve $d(t)$:

$$d(v) + w(v, t) < d(t)$$

Could also improve $d(t)$ if the score of one of its ancestors improves.
By exploring some path from s to t we get a path score (e.g. 26), the score of t is 26, which may only decrease as we explore more options.

If we find the score of v $d(v)$ & \exists edge $v \rightarrow t$ then we can possibly improve $d(t)$:

$$d(v) + w(v, t) < d(t)?$$

Could also improve $d(t)$ if the score of one of its ancestors improves.
By exploring some path from \(s \) to \(t \) we get a path score (e.g. 26) the score of \(t \) is 26, which may only decrease as we explore more options.

If we find the score of \(v \) \(d(v) \) & \(\exists \) edge \(v \to t \) then we can possibly improve \(d(t) \):

\[
d(v) + w(v, t) < d(t)\
\]

Could also improve \(d(t) \) if the score of one of its ancestors improves
Relax\((v,t)\): checking if score of \(t\) can be improved (lowered) by using \(s \rightarrow v \rightarrow t\)

Keep min of \(d(t)\) vs. \(d(v) + w(v,t)\)

If \(v\) helps, then parent\((t) = v\)
Assume this is a shortest path from s to t unknown but exists size: $k < V$

Suppose we have an algorithm based on relaxing edges. If we relax e_1 before e_2 before \ldots before e_{k-1} before e_k then we will correctly compute $d(t)$.

Relax sequence: $e^* e_1 e^j e^* e_2 e^* e_1 e_k e_{k-1} e_i e^* e_k e^y$: ok (don't care if we relax other edges or the same ones repeatedly)