SINGLE SOURCE SHORTEST PATHS
SINGLE SOURCE SHORTEST PATHS

Generally assume a directed graph (can make undirected→directed easily)
SINGLE SOURCE SHORTEST PATHS

\[S \]
SINGLE SOURCE SHORTEST PATHS

paths from s to t

$3 + 2 + 1 + 20$
SINGLE SOURCE SHORTEST PATHS

paths from s to t

$3 + 2 + 1 + 20$

$3 + 2 + 4 + 15$

not greedy or BFS

although this is an extension of BFS
(weights = 1)
SINGLE SOURCE SHORTEST PATHS

paths from s to t

3 + 2 + 1 + 20
3 + 2 + 4 + 15
3 + 2 + 4 + 5 + 8 = 22

not greedy or BFS

tot. length of path from s
SINGLE SOURCE SHORTEST PATHS

paths from s to t

\[3 + 2 + 1 + 20 \]
\[3 + 2 + 4 + 15 \]
\[3 + 2 + 4 + 5 + 8 \]

not greedy or BFS

multiple options:
\[5 + 1 + \ldots \]
\[+ 4 + \ldots \]

= 22
SINGLE SOURCE SHORTEST PATHS

paths from s to t

$3 + 2 + 1 + 20$

$3 + 2 + 4 + 15$

$3 + 2 + 4 + 5 + 8 = 22$

not greedy or BFS

multiple options

$5 + 1 + ...$

$+ 4 + ... = 22$

disconnected from s
SINGLE SOURCE SHORTEST PATHS

Observations
- No cycles in \(s \to t \) (shortest path)

assumption?
SINGLE SOURCE SHORTEST PATHS

Observations

- No cycles in $s \rightarrow t$
- Negative weights are OK, unless they form a negative cycle in G

$\sum (\text{cycle}) < 0$
SINGLE SOURCE SHORTEST PATHS

Observations
- No cycles in $s \rightarrow t$
- Negative weights are OK, unless they form a negative cycle in G

Any vertex reachable from a negative cycle gets a score of $-\infty$ assuming cycle can be reached from s
SINGLE SOURCE SHORTEST PATHS

![Diagram of a graph with labeled edges and vertices]

Observations
- No cycles in $s \rightarrow t$
- Negative weights are OK, unless they form a negative cycle in G

Any vertex reachable from a negative cycle gets a score of $-\infty$
Observations

- No cycles in $s \rightarrow t$
- Negative weights \(\sim \text{OK, unless they form a negative cycle in } G \)
- Shortest path $s \rightarrow v \rightarrow t$
- Shortest path $s \rightarrow v \leftarrow (9)$
- Shortest path $v \rightarrow t \leftarrow (13)$
there may be multiple shortest paths
e.g. $s \rightarrow t$ or $s \rightarrow x \rightarrow y \rightarrow t$
there may be multiple shortest paths
e.g. $s \rightarrow t$ or $s \rightarrow x \rightarrow y \rightarrow t$

All shortest paths from s to V
can be represented in a DAG
DAG → tree: arbitrarily keep one path to each vertex

"shortest paths tree"

there may be multiple shortest paths
e.g. \(s \rightarrow t \) or \(s \rightarrow x \rightarrow y \rightarrow t \)

All shortest paths from \(s \) to \(V \) can be represented in a DAG

(similar to picking one BFS/DFS search)
By exploring some path from s to t we get a path score (e.g. 26)
By exploring some path from s to t we get a path score (e.g. 26) the score of t is 26, which may only decrease as we explore more options.
By exploring some path from s to t we get a path score (e.g. 26) the score of t is 26, which may only decrease as we explore more options.

If we update the score of v:

$$d(v)$$

& \exists \text{ edge } v \rightarrow t

then we can possibly improve $d(t)$:

$$d(v) + w(v, t) < d(t) \quad (15)$$
By exploring some path from \(s \) to \(t \) we get a path score (e.g. 26) the score of \(t \) is 26, which may only decrease as we explore more options.

If we update the score of \(v \):
\[
d(v)
\]

where there exists an edge \(v \rightarrow t \) then we can possibly improve \(d(t) \):
\[
d(v) + w(v,t) < d(t) \tag{15}
\]
By exploring some path from s to t we get a path score (e.g. 26) the score of t is 26, which may only decrease as we explore more options.

If we update the score of v:

$$d(v)$$

& \exists edge $v \rightarrow t$

then we can possibly improve $d(t)$:

$$d(v) + w(v, t) < d(t) \quad (15)$$
Relax(v,t): checking if score of t can be improved (lowered) by using $s \rightarrow v \rightarrow t$
Relax\((v,t)\): checking if score of \(t\) can be improved (lowered) by using \(s \rightarrow v \rightarrow t\).
Relax(v,t): checking if score of t can be improved (lowered) by using $s \rightarrow v \rightarrow t$.

Keep min of $d(t)$ vs. $d(v) + w(v,t)$.

If v helps, then parent$(t) = v$.

Diagram with nodes and edges labeled with weights.
Assume this is a shortest path from s to t.
Assume this is a shortest path from s to t. unknown but exists
Assume this is a shortest path from s to t but unknown exists.

Suppose we have an algorithm based on relaxing edges.
Assume this is a shortest path from s to t unknown but exists.

Suppose we have an algorithm based on relaxing edges.

If we relax e_1 before e_2 before \ldots before e_{k-1} before e_k then \ldots ?
Assume this is a shortest path from s to t (unknown but exists).

Suppose we have an algorithm based on relaxing edges.

If we relax e_1 before e_2 before ... before e_{k-1} before e_k then we will correctly compute $d(t)$.
Assume this is a shortest path from \(s \) to \(t \) unknown but exists.

Suppose we have an algorithm based on relaxing edges.
If we relax \(e_1 \) before \(e_2 \) before \(\ldots \) before \(e_{k-1} \) before \(e_k \) arbitrary then we will correctly compute \(d(t) \).

Relax sequence: \(e^*e_1e^*e_2e^*e_1e_k e_{k-1}e_1e^*e_k e^*e^*e_k e^* \)
Assume this is a shortest path from s to t unknown but exists

Suppose we have an algorithm based on relaxing edges. If we relax e_1 before e_2 before ... before e_{k-1} before e_k then we will correctly compute $d(t)$.

Relax sequence: $e^x e_1 e^j e^y e_2 e^x e^i e_k e_{k-1} e_i e^x e_k e^y$: OK (don't care if we relax other edges or the same ones repeatedly)
Assume this is a shortest path from s to t unknown but exists

Suppose we have an algorithm based on relaxing edges.

If we relax e_1 before e_2 before \ldots before e_{k-1} before e_k

then we will correctly compute $d(t)$ why?

Relax sequence: $e^x, e_1, e^y, e_2, e^x, e_1, e^y, e_k, e_{k-1}, e_1, e^x, e_k, e^y$: ok

(don't care if we relax other edges or the same ones repeatedly)
Assume this is a shortest path from s to t unknown but exists

Suppose we have an algorithm based on relaxing edges. If we relax e_1 before e_2 before \ldots before e_{k-1} before e_k then we will correctly compute $d(t)$ by induction.

Relax sequence: $e^* e_1 e^* e_2 e^* e_1 e_k e_{k-1} e_1 e^* e_k e^*$ is OK (don't care if we relax other edges or the same ones repeatedly)