remember PRIM'S ALGORITHM for MST?

1) start w/ any vertex s; set $w(s) = 0$
2) set $w(\neq s) = \infty$ & put all in pr.queue
3) while pr.queue not empty

 x: extract-min & add edge to T
 mark $x \to$ in T.
 for each unmarked neighbor v of x
 if $w(v) > w(v,x)$ then decrease.
remember PRIM'S ALGORITHM for MST?

(after initializing)
while pr.queue not empty
 x: extract-min & add edge to T
 mark x\rightarrow in T.
 for each unmarked neighbor v of x
 if w(v) > w(v,x) then decrease.
PRIM'S ALGORITHM for MST

(modified)

(after initializing)

while pr.queue not empty
 x: extract-min & add edge to T
 mark x → in T.
 for each unmarked neighbor v of x
 if w(v) > w(v,x) then decrease.
 RELAX (x,v)
(after initializing)
while pr.queue not empty
 x: extract-min & add edge to T
 mark x → in T.
 for each neighbor v of x
 RELAX(x,v)
DIJKSTRA'S ALGORITHM for SSSP

(after initializing)
while pr.queue not empty
 x: extract-min & add edge to T
 mark x -> in T.
 for each neighbor v of x
 RELAX(x, v)

(new example)
DIJKSTRA'S ALGORITHM for SSSP

(after initializing)
while pr.queue not empty
 x: extract-min & add edge to T
 mark x -> in T.
 for each neighbor v of x
 RELAX(x,v)

extract source & relax two edges
Dijkstra’s Algorithm for SSSP

(after initializing)
while pr.queue not empty
 x: extract-min & add edge to T
 mark x -> in T.
 for each neighbor v of x
 RELAX(x, v)

extract min: 10
DIJKSTRA'S ALGORITHM for SSSP

(after initializing)

while pr.queue not empty

x: extract-min & add edge to T
mark x → in T.

for each neighbor v of x

RELAX(x, v)
DIJKSTRA'S ALGORITHM for SSSP

(after initializing)
while pr.queue not empty
 x: extract-min & add edge to T
 mark x -> in T.
 for each neighbor v of x
 RELAX(x,v)
DIJKSTRA'S ALGORITHM for SSSP

(after initializing)
while pr.queue not empty
 x: extract-min & add edge to T
 mark x → in T.
 for each neighbor v of x
 RELAX(x,v)

No outcome from relaxing 13
Dijkstra's Algorithm for SSSP

(after initializing)
while pr.queue not empty
 x: extract-min & add edge to T
 mark x \rightarrow in T.
 for each neighbor v of x
 RELAX(x, v)
DIJKSTRA'S ALGORITHM for SSSP

(after initializing)
while pr.queue not empty
 x: extract-min & add edge to T
 mark x \to in T.
 for each neighbor v of x
 RELAX(x, v)
DIJKKTRA'S ALGORITHM for SSSP

(after initializing)
while pr.queue not empty
 \(x: \) extract-min & add edge to \(T \)
 mark \(x \rightarrow \) in \(T \).
 for each neighbor \(v \) of \(x \)
 RELAX(\(x, v \))
DIJKSTRA'S ALGORITHM for SSSP

(after initializing)

while pr.queue not empty

 x: extract-min & add edge to T

 mark x \rightarrow in T.

 for each neighbor v of x

 RELAX(x, v)
DIJKSTRA'S ALGORITHM for SSSP

(after initializing)
while pr.queue not empty
 x: extract-min & add edge to T
 mark x -> in T.
 for each neighbor v of x
 RELAX(x,v)
Dijkstra's Algorithm for *SSSP*

(after initializing)

while pr.queue not empty

\[x : \text{extract-min} \text{ & add edge to } T \]

mark \(x \rightarrow \text{in } T. \)

for each neighbor \(v \) of \(x \)

\[\text{RELAX}(x,v) \]
Dijkstra's Algorithm for SSSP

(after initializing)

while pr.queue not empty

- x: extract-min & add edge to T

mark x → in T.

for each neighbor v of x

RELAX(x,v)

time?
DIJKSTRA'S ALGORITHM for SSSP

(after initializing)

while pr.queue not empty

- \(x \): extract-min & add edge to \(T \)
- mark \(x \rightarrow \) in \(T \).

for each neighbor \(v \) of \(x \),

- RELAX(\(x,v \))

Time: \(O(\min\{V^2, E \log V\}) \)

(like Prim's algo, for fancier see CLRS)
Correctness:

Assume we have shortest path to a set of red vertices.
Correctness:

Assume we have shortest path to a set of red vertices.

Somewhere outside this set is a vertex v with shortest path $= \ [\text{a path in known set}] + \text{black edge}$.
Correctness:

Assume we have shortest path to a set of red vertices.

Somewhere outside this set is a vertex v with shortest path = $\text{[a path in known set]} + \text{black edge}$.

Any other path $s \rightarrow v$ will cost more.
Correctness:

Assume we have shortest path to a set of red vertices.

Somewhere outside this set is a vertex \(v \) with shortest path =

\[\text{[a path in known set]} + \text{black edge} \]

Any other path \(s \rightarrow v \) will cost more \(\{ \) assuming weights \(\geq 0 \)}