PRIM'S ALGORITHM for MST

1) Start w/ any vertex \(s \); set \(w(s) = 0 \)
2) Set \(w(\neq s) = \infty \) & put all in pr.queue
3) While pr.queue not empty
 \[x: \text{extract-min} \] & add edge to \(T \)
 Mark \(x \rightarrow \) in \(T \).
 For each unmarked neighbor \(v \) of \(x \)
 If \(w(v) > w(v, x) \) then decrease.
Remember PRIM'S ALGORITHM for MST?

(after initializing)

while pr.queue not empty

\[x: \text{extract-min} \& \text{add edge to } T \]

mark \[x \rightarrow \text{in } T. \]

for each unmarked neighbor \[v \] of \[x \]

if \[w(v) > w(v,x) \] then decrease.
modified PRIM'S ALGORITHM for MST

(after initializing)
while pr.queue not empty
\[x: \text{extract-min} \ & \ add \text{ edge to } T \]
mark \[x \rightarrow \text{in } T. \]
for each unmarked neighbor \(v \) of \(x \)
if \[w(v) > w(v,x) \] then decrease.
\[\text{RELAX}(x,v) \]
DIJKSTRA'S ALGORITHM for SSSP
(1956 - 1959)

(after initializing)

while pr.queue not empty
 x: extract-min & add edge to T
 mark x → in T.
 for each neighbor v of x
 RELAX(x, v)
DIJKSTRA’S ALGORITHM for SSSP

Initialize

(after initializing)
while pr.queue not empty
 x: extract-min & add edge to T
 mark x → in T.
 for each neighbor v of x
 RELAX(x,v)
DIJKSTRA'S ALGORITHM for SSSP

(after initializing)
while pr.queue not empty
 x: extract-min & add edge to T
 mark x -> in T.
 for each neighbor v of x
 RELAX(x,v)

extract source & relax two edges
DIJKSTRA'S ALGORITHM for SSSP

(after initializing)

while pr.queue not empty

x: extract-min & add edge to T
mark x → in T.

for each neighbor v of x
RELAX(x,v)

extract min: 10
DIJKSTRA'S ALGORITHM for SSSP

(after initializing)
while pr.queue not empty
 x: extract-min & add edge to T
 mark x -> in T.
 for each neighbor v of x
 RELAX (x, v)

Relax neighbors of 10
Dijkstra's Algorithm for SSSP

(after initializing)
while pr.queue not empty
 x: extract-min & add edge to T
 mark x -> in T.
 for each neighbor v of x
 RELAX(x,v)
DIJKSTRA'S ALGORITHM for SSSP

(after initializing)

while pr.queue not empty

 x: extract-min & add edge to T
 mark x → in T.
 for each neighbor v of x
 RELAX(x, v)

No update from relaxing
Dijkstra's Algorithm for SSSP

(after initializing)
while pr.queue not empty
 x: extract-min & add edge to T
 mark x→ in T.
 for each neighbor v of x
 RELAX(x,v)
DIJKSTRA'S ALGORITHM for SSSP

(after initializing)
while pr.queue not empty
 x: extract-min & add edge to T
 mark x → in T.
 for each neighbor v of x
 RELAX(x, v)
Dijkstra's Algorithm for SSSP

(after initializing)
while pr.queue not empty
 x: extract-min & add edge to T
 mark x→ in T.
 for each neighbor v of x
 RELAX(x,v)
Dijkstra's Algorithm for SSSP

(after initializing)

while pr.queue not empty

x: extract-min & add edge to T
mark x \rightarrow in T.
for each neighbor v of x
RELAX(x, v)
DIJKSTRA'S ALGORITHM for SSSP

(after initializing)

while pr.queue not empty

\[x \text{: extract-min} \text{ & add edge to } T \]

mark \(x \rightarrow \) in \(T \).

for each neighbor \(v \) of \(x \)

RELAX \((x, v)\)
DIJKSTRA'S ALGORITHM for SSSP

(after initializing)
while pr.queue not empty
 x: extract-min & add edge to T
 mark x \rightarrow in T.
for each neighbor v of x
 RELAX(x, v)
DIJKSTRA'S ALGORITHM for SSSP

(after initializing)
while pr.queue not empty
- x: extract-min & add edge to T
 mark x→ in T.
 for each neighbor v of x
 RELAX(x,v)

etc

time?
DIJKSTRA'S ALGORITHM for SSSP

(after initializing)
while pr.queue not empty
 x: extract-min & add edge to T
 mark x -> in T.
 for each neighbor v of x
 RELAX(x, v)

 etc

time: O(V^2) or O(E log V)

(like Prim's algo // for fancier see CLRS)
Correctness:

Assume we have shortest path to a set of red vertices.
Correctness:

Assume we have shortest path to a set of red vertices.

Somewhere outside this set is a vertex v with shortest path $= \left[\text{a path in known set} \right] + \text{black edge}$.
Correctness:

Assume we have the shortest path to a set of red vertices.

Somewhere outside this set is a vertex \(v \) with shortest path =

\[
= [\text{a path in known set}] + \text{black edge}
\]

Any other path \(s \leadsto v \) will cost more.
Correctness:

Assume we have shortest path to a set of red vertices.

Somewhere outside this set is a vertex v with shortest path $= [\text{a path in known set}] + \text{black edge}$.

Any other path $s \rightarrow v$ will cost more.

$\{\text{assuming weights } \geq 0\}$