REducing one decision problem to another
REDUCING ONE (DECISION) PROBLEM TO ANOTHER

input for A ➔ Transform to input/problem B ➔ solve B ➔ YES or NO

output of B ➔ YES or NO

output of A ➔ YES or NO

solve A using B
REDUCING ONE (DECISION) PROBLEM TO ANOTHER

input for A → Transform to input/problem B → solve B → output of B → YES/NO

solve A using B : T_R + T_B

output of B → YES/NO

output of A → YES/NO

input for A
REDUCE ONE (DECISION) PROBLEM TO ANOTHER

input for A

Transform to input/problem B

solve B

output of B

no

yes

solve A using B : \(T_R + T_B \)

is L.I.S. (A) \(\geq k \) ?

no

yes
REDDUCING ONE (DECISION) PROBLEM TO ANOTHER

INPUT FOR A

Transform to input/problem B

Solve B

Output of B

Solve A using B : TR + TB

Is L.I.S. (A) ≥ k ?

Copy A → B, sort B

Is L.C.S. (A, B) ≥ k ?

OUTPUT OF A

YES

NO

YES

NO

YES

NO

YES

NO
LOWER BOUND FOR ONE (DECISION) PROBLEM VIA ANOTHER

input for D

solve D: known $\Omega(f(n))$

output of D

C

D

YES

NO
LOWER BOUND FOR ONE (DECISION) PROBLEM VIA ANOTHER

input for D

Transform to input/problem C

solve C

output of C

output of D

solve D: known $\Omega(f(n))$
LOWER BOUND FOR ONE (DECISION) PROBLEM VIA ANOTHER

input for D

Transform to input/problem C

$T_R = o(f(n))$

solve C

output of C

T_C

output of D

solve D: known $\Omega(f(n)) = T_R + T_C$
Lower bound for one (decision) problem via another

\[T_R = o(f(n)) \]

\[T_C = \Omega(f(n)) \]

\[\text{solve } D: \text{ known } \Omega(f(n)) = T_R + T_C \Rightarrow T_C = \Omega(f(n)) \]
LOWER BOUND FOR ONE (DECISION) PROBLEM VIA ANOTHER

\[T_R = o(f(n)) \]

[Diagram]

Transform to input/problem \(C \)

Solve \(C \)

output of \(C \)

Yes \(\Rightarrow \) output of \(D \)

Yes \(\Rightarrow \) No

No \(\Rightarrow \) Yes

solve \(D \): known \(\Omega(f(n)) = T_R + T_C \Rightarrow T_C = \Omega(f(n)) \)

- quick transformation \(\Rightarrow \) \(C \) is at least as difficult as \(D \)
 (fast solution for \(C \) \(\Rightarrow \) fast solution for \(D \))
NPC Reduction for one (decision) problem via another
NPC REDUCTION FOR ONE (DECISION) PROBLEM VIA ANOTHER

input for D → D: known NPC

output of D → YES

output of D → NO
NPC REDUCTION FOR ONE (DECISION) PROBLEM VIA ANOTHER

input for D

Transform to input/problem C

solve C

output of C

YES

output of D

YES

NO

NO

D: known NPC
NPC REDUCTION FOR ONE (DECISION) PROBLEM VIA ANOTHER

D: known NPC

input for D

Transform to input/problem C

TR = polynomial

solve C

output of C

D

output of D

YES

NO

YES

NO
NPC REDUCTION FOR ONE (DECISION) PROBLEM VIA ANOTHER

Input for D

Transform to input/problem C

$T_R = \text{polynomial}$

Solve C

Solve D: known NPC = $T_R + T_C = \text{poly-time} + T_C$

Output of C

Yes

No

Output of D

Yes

No
NPC REDUCTION for one (decision) PROBLEM via ANOTHER

input for D

transform to input/problem C

$T_R = \text{polynomial}$

solve C

T_C

output of C

output of D

yes

no

\(\Rightarrow T_C \text{ is NP-hard} \)
(or T_C is polynomial $\Rightarrow P = NP$)
NPC Reduction for One (Decision) Problem via Another

Input for D

Transform to input/problem C

$T_R = \text{polynomial}$

Solve C

Output of C

Solve D: known NPC

$T_R + T_c = \text{poly-time} + T_c$

$\Rightarrow T_c$ is NP-hard

& if C is in NP

then C is NPC

(or T_c is polynomial $\Rightarrow P=NP$)
NPC REDUCTION for one (decision) problem via another

~like establishing an almost certain lower bound for C.

\[T_{R} = \text{polynomial} \]

solve D: known NPC

\[T_{R} + T_{C} = \text{poly-time} + T_{C} \]

⇒ \(T_{C} \) is NP-hard

(\(\text{or } T_{C} \text{ is polynomial} \Rightarrow P=NP \))
$A \leq_p B$: in polynomial time, A can be transformed to B
$A \leq_p B$: in polynomial time, A can be transformed to B

$\Rightarrow B$ is at least as hard as A.

Solving B in poly-time \Rightarrow solving A in poly-time
$A \leq_p B$: in polynomial time, A can be transformed to B

$\implies B$ is at least as hard as A.
Solving B in poly-time \implies solving A in poly-time

If $\{\text{any problem in NP}\} \leq_p B$ then B is NPC.
\[A \leq_p B : \text{ in polynomial time, } A \text{ can be transformed to } B \]

\[\Rightarrow B \text{ is at least as hard as } A. \]

Solving \(B \) in poly-time \(\Rightarrow \) solving \(A \) in poly-time

If \(\{\text{any problem in } \text{NP}\} \leq_p B \), then \(B \) is NPC.

Notice if \(A \) & \(B \) are NPC then \(A \leq_p B \) & \(B \leq_p A \).

\(\sim A \equiv_p B \)
Thousands of NPC problems
Thousands of NPC Problems

Reductions/transformations between them resemble a di-graph.
THOUSANDS OF NPC PROBLEMS

Reductions/transformations between them resemble a di-graph.

\(\not \in \text{a DAG? No.} \)
Thousands of NPC Problems

Reductions/transformations between them resemble a di-graph.

A DAG? No.

strongly connected components?
THOUSANDS OF NPC PROBLEMS

Reductions/transformations between them resemble a di-graph.

Is a DAG? No.

Strongly connected components?
Must be 1, precisely.
THOUSANDS OF NPC PROBLEMS

Reductions/transformations between them resemble a di-graph.

≠ a DAG? No.

#strongly connected components?

Must be 1, precisely.

FACT

∃ at least one problem A s.t.
A ≽p everything?
& everything ≽p...≽p A
Circuit SAT (satisfiability)

The first NPC problem.
Circuit SAT (satisfiability)
The first NPC problem.
Given a circuit, can the output ever be 1?
Circuit SAT (satisfiability)
The first NPC problem.
Given a circuit, can the output ever be 1?

\[\begin{cases}
0 & x_1 \\
1 & x_2 \\
1 & x_4 \\
0 & x_5 \\
\end{cases} \]

\begin{align*}
\text{OR} & \quad \text{OR} \\
\text{AND} & \\
\text{AND} & \\
\end{align*}

\text{output}
Circuit SAT (satisfiability)
The first NPC problem.
Given a circuit, can the output ever be 1?

\[x_i : \text{input} \]

\[\begin{align*}
0 & \quad x_1 \quad \text{OR} \quad 1 \\
1 & \quad x_2
\end{align*} \]

\[\begin{align*}
0 & \quad x_3 \quad \text{NOT} \quad 1 \\
1 & \quad x_4 \quad \text{AND} \\
0 & \quad x_5
\end{align*} \]

\[\text{AND} \quad \text{output} \]
Circuit SAT (satisfiability)
The first NPC problem.
Given a circuit, can the output ever be 1?

\[x_1, x_2, x_3, x_4, x_5 \]

...
Circuit SAT (satisfiability)
The first NPC problem.
Given a circuit, can the output ever be 1?
Circuit SAT (satisfiability)
The first NPC problem.
Given a circuit, can the output ever be 1?

\[x_i \text{: input} \]

\[
\begin{align*}
0 & \quad x_1 \quad \text{OR} \\
0 & \quad x_2 \\
0 & \quad \text{OR} \\
0 & \quad x_3 \quad \text{NOT} \\
0 & \quad x_4 \\
0 & \quad x_5 \\
\end{align*}
\]

\[
\begin{align*}
\text{AND} & \\
\text{AND} & \quad \text{(yes)} \\
\text{output} & \quad 1
\end{align*}
\]
Circuit SAT (satisfiability)
The first NPC problem.
Given a circuit, can the output ever be 1?
1 - in NP ... intuitive
Circuit SAT (satisfiability)
The first NPC problem.
Given a circuit, can the output ever be 1?

1 - in NP ... intuitive
2 - every problem can be described as a circuit
\{everything\} \leq \text{p} \text{ circuit-SAT}
Circuit SAT (satisfiability)
The first NPC problem.
Given a circuit, can the output ever be 1?

1 - in NP ... intuitive
2 \forall every problem can be described as a circuit \{technical
\foralleverythings \leq_p circuit-SAT

...and we don't know how to solve this in polynomial time. (not in P)
Boolean SAT \quad (x_1 \lor x_2 \lor \overline{x}_3) \land ((x_1 \leftrightarrow x_5) \lor (x_4 \rightarrow \overline{x}_3)) \rightarrow 1
Boolean SAT: \((x_1 \lor x_2 \lor \overline{x}_3) \land ((x_1 \leftrightarrow x_5) \lor (x_4 \rightarrow \overline{x}_3)) \rightarrow \neg \rightarrow 1\)

Given a circuit-SAT instance:

[Diagram of a circuit with nodes and gates]
Boolean SAT \((x_1 \lor x_2 \lor x_3) \land (x_1 \leftrightarrow x_5) \lor (x_4 \rightarrow \overline{x}_3)\) \(\rightarrow \) ? \(\rightarrow 1\)

Given a circuit-SAT instance, transform (quickly) into a Boolean SAT.

\[w \land (w \leftrightarrow (y_4 \land y_2 \land y_3)) \]
Boolean SAT \((x_1 \lor x_2 \lor \overline{x_3}) \land ((x_1 \leftrightarrow x_5) \lor (x_4 \rightarrow \overline{x_3}))\) → ? → 1

Given a circuit-SAT instance, transform (quickly) into a Boolean SAT:

\[w \land (w \leftrightarrow (y_4 \land y_2 \land y_3)) \land (y_4 \leftrightarrow (y_1 \lor y_2)) \]
Given a circuit-SAT instance, transform (quickly) into a Boolean SAT.

\[
\begin{align*}
 \text{Boolean SAT} & \quad (x_1 \lor x_2 \lor \overline{x_3}) \land ((x_1 \leftrightarrow x_5) \lor (x_4 \rightarrow \overline{x_3})) \\
 \text{transform} & \quad \rightarrow \quad 1
\end{align*}
\]
Given a circuit-SAT instance, transform (quickly) into a Boolean SAT:

\[
\begin{align*}
 &\neg \phi \\
 &= \neg (w \land (w \leftrightarrow (y_4 \land y_2 \land y_3))) \\
 &\quad \land (y_4 \leftrightarrow (y_1 \lor y_2)) \\
 &\quad \land (y_1 \leftrightarrow (c_1 \lor c_2)) \\
 &\quad \land (y_2 \leftrightarrow \overline{c_3})
\end{align*}
\]
Boolean SAT:

\[(x_1 \lor x_2 \lor \overline{x}_3) \land ((x_1 \leftrightarrow x_5) \lor (x_4 \rightarrow \overline{x}_3)) \rightarrow ? \rightarrow 1\]

Given a circuit-SAT instance, transform (quickly) into a Boolean SAT.

\[w \land (w \leftrightarrow (y_4 \land y_2 \land y_3))\]
\[\land (y_4 \leftrightarrow (y_1 \lor y_2))\]
\[\land (y_1 \leftrightarrow (c_1 \lor c_2))\]
\[\land (y_2 \leftrightarrow \overline{c_3})\]
\[\land (y_3 \leftrightarrow (c_4 \land c_5))\]
Boolean SAT:

\((x_1 \lor x_2 \lor \overline{x_3}) \land ((x_1 \leftrightarrow x_5) \lor (x_4 \rightarrow \overline{x_3})) \rightarrow ? \rightarrow 1\)

Given a circuit-SAT instance transform (quickly) into a Boolean SAT.

by solving the Boolean SAT you get an answer for circuit SAT:

\(w \land (w \leftrightarrow (Y_4 \land Y_2 \land Y_3))\)

\(\land (Y_4 \leftrightarrow (Y_1 \lor Y_2))\)

\(\land (Y_1 \leftrightarrow (C_1 \lor C_2))\)

\(\land (Y_2 \leftrightarrow \overline{C_3})\)

\(\land (Y_3 \leftrightarrow (C_4 \land C_5))\)
3-SAT

\[(x_1 \lor x_2 \lor x_3) \]
\[\land (x_1 \lor x_4 \lor x_5) \]
\[\land (x_2 \lor \overline{x}_4 \lor x_{13}) \]
\[\land (x_2 \lor \overline{x}_3 \lor x_3) \]
\[\vdots \]

\(n \) clauses
\(\) each with 3 literals
\[(a \lor b \lor c) \land (b \lor \overline{c} \lor \overline{d}) \land (\overline{a} \lor c \lor d) \land (a \lor \overline{b} \lor \overline{d})\]

\(k\) clauses

3-SAT \rightarrow boolean SAT \rightarrow Circuit SAT

construct graph (quickly)
\((a \lor b \lor c) \land (b \lor \overline{c} \lor \overline{d}) \land (\overline{a} \lor c \lor d) \land (a \lor \overline{b} \lor \overline{d})\)

\(k\) clauses

3-SAT \rightarrow boolean SAT \rightarrow circuit SAT

construct graph (quickly)

for every triple \((x \lor y \lor z)\) make a triple of vertices, linked together
\[(a \lor b \lor c) \land (b \lor \overline{c} \lor \overline{d}) \land (\overline{a} \lor c \lor d) \land (a \lor \overline{b} \lor \overline{d})\]

\(k\) clauses

Construct graph (quickly)
\[(a \lor b \lor c) \land (b \lor \overline{c} \lor \overline{d}) \land (\overline{a} \lor c \lor d) \land (a \lor \overline{b} \lor \overline{d})\]\n
\(3\text{-SAT} \rightarrow \text{boolean SAT} \rightarrow \text{circuit SAT}\)

\(k\) clauses

construct graph (quickly)
\[(a \lor b \lor c) \land (b \lor \overline{c} \lor \overline{d}) \land (\overline{a} \lor c \lor d) \land (a \lor \overline{b} \lor \overline{d})\]

\[\text{construct graph (quickly)}\]

\[\text{link every vertex to any other vertex that has the same variable but negated}\]
\[(a \lor b \lor c) \land (b \lor \overline{c} \lor \overline{d}) \land (\overline{a} \lor c \lor d) \land (a \lor \overline{b} \lor \overline{d})\] k clauses

3-SAT \rightarrow boolean SAT \rightarrow circuit SAT

Ask: does this graph have k independent vertices?

To find k independent, you must use each triple, because each triple can only have 1 independent vertex.
As soon as you select a vertex in a triple, that blocks you from using its negation anywhere else.
\[(a \lor b \lor c) \land (b \lor \bar{c} \lor \bar{d}) \land (\bar{a} \lor c \lor d) \land (a \lor \bar{b} \lor \bar{d})\]

\(k\) clauses

If you can't find \(k\) independent vertices, then some triple had no selectable vertex... i.e. all 3 were blocked by selections in other triples. That corresponds to an unsatisfiable row in 3-SAT.

Ask: does this graph have \(k\) independent vertices?

If yes, then 3-SAT is \(\checkmark\)
If no, then 3-SAT is \(\times\)
\[(a \lor b \lor c) \land (b \lor \bar{c} \lor \bar{d}) \land (\bar{a} \lor c \lor d) \land (a \lor \bar{b} \lor \bar{d})\]

\(k\) clauses

Construct graph (quickly)

Ask: does this graph have \(k\) independent vertices?

If yes, then 3-SAT is \(\checkmark\)

If no, then 3-SAT is \(\times\)
\[(a \lor b \lor c) \land (b \lor \overline{c} \lor \overline{d}) \land (\overline{a} \lor c \lor d) \land (a \lor \overline{b} \lor \overline{d})\]

\[k \text{ clauses}\]

\[3\text{-SAT} \rightarrow \text{boolean SAT} \rightarrow \text{Circuit SAT}\]

\[\text{independent set}\]

\[\text{Ask: does this graph have } k \text{ independent vertices?}\]

\[\text{If yes, then 3-SAT is } \checkmark\]
\[\text{If no, then 3-SAT is } \times\]
CLIQUE in a graph: subset of V s.t. all pairs of vertices share edges.
CLIQUE in a graph: subset of V s.t. all pairs of vertices share edges.
CLIQUE in a graph: subset of V s.t. all pairs of vertices share edges.

Independent set size k \iff Cliquer size k
CLIQUE in a graph: subset of V s.t. all pairs of vertices share edges.

independent set size k \iff clique size k

G $\xrightarrow{\text{transform}}$ complement (G)

Asking if a graph has a clique of size k: NPC
OTHER HARD PROBLEMS

- knapsack: given item types, w/ size & value, fill a bag w/ max value (multiples ok)
- subset sum: does a subset of given integers sum to t?
- partition: split set of integers in 2 groups with equal sums
- planar SAT: SAT without wire crossings
- set cover: given some sets, select min# sets s.t. all elements are present
- hitting set: given sets, select min# elements s.t. all sets are represented
- longest path: visiting each vertex once.
- Steiner tree: ~MST on selected subset of a graph
- traveling salesman: min-cost simple cycle on weighted complete graph
OTHER HARD PROBLEMS

& some are even harder

Tetris Minesweeper Lemmings

Mario Bros Pac-man

Prince of Persia Portal Doom

etc