NP-COMPLETENESS: a brief informal introduction

We've seen algorithms with several time complexities:

- $O(n)$
- $O(\log n)$
- $O(n \log n)$
- $O(n^2)$
- $O(n^c)$
- $O(2^n)$

Focus on decision problems:

- $O(n^c)$
- $O(\log n)$
- $O(n \log n)$
- $O(n^2)$
- $O(n^c)$

Not polynomial:

- $w(n^c)$
- $O(2^n)$

NP:

We haven't found $O(n^c)$ yet, but we can verify solutions in $O(n^c)$.
NP: non-deterministic polynomial
\[\text{(NOT "non-polynomial")} \]

The $1,000,000$ question...

\[P \text{ v. NP : } = \text{ or } \neq ? \]

Is it ever "much" harder to solve a problem than it is to verify a solution, if the verification takes poly-time?

\[T(\text{verify}) = o(n^c \cdot T(\text{solve})) \]
\[T(\text{solve}) = \omega(n^c \cdot T(\text{verify})) \]
There are thousands of problems for which no known polynomial-time solution is known, yet we can verify proposed solutions in poly-time.

e.g. Hamiltonian cycle
given a graph, find a cycle that visits each vertex exactly once.

\Rightarrow \text{decide if one exists}
DECISION PROBLEM
"is there a set of k independent vertices?"

OPTIMIZATION PROBLEM
"find the largest independent set"

(independent: no neighbors)

binary search on k: 0...|V|

Often, optimization problems are not polynomially harder than decision.
NP-COMPLETE PROBLEMS

1) in NP, & not known to be in P
 (decision problems with solutions that can be verified in poly-time, but for which no poly-time algo is known)

2) if you ever find a polynomial-time solution for any NPC problem, this implies the same for every problem in NP. \(\rightarrow P = \text{NP} \)

\(\text{if you ever prove that an NPC problem has no poly-time algo, then no NPC problem does } \rightarrow P \neq \text{NP} \)
Are there other problems in NP but not in P or NPC?
- If P=NP then N/A.
- If P≠NP then yes. [Theorem]

Few "natural" problems (almost everything in NP is P or NPC)

If we solved such a problem in poly-time, it would just move into P without dragging everything else along.
NP-hard problems

- as hard as any NP problem.
- NPC problems are NP-hard.
- NP-hard need not be NPC
 - might not be decision problems
 - or might not have poly-time verification.
- like NPC, solving an NP-hard problem quickly \rightarrow same for all NP

NP-hard \subseteq NPC

NPC = NP-hard & in NP

independent set

decision (\leq k?)

optimization (max k)

NP-hard
AN IMPORTANT DETAIL just mentioned here

For NPC problems, we measure input in terms of a finite alphabet (e.g. binary \(1 = 1\) bit; \(k = \Theta(\log k)\) bits)

-unlike our treatment of constants so far

\[1 = O(1) \quad \text{and} \quad k = O(1)\]

All this really means is that if you suspect a problem A is NP-hard (or NPC), to prove this you should measure the input in bits, and prove that you can transform problem A to a known hard problem in time polynomial in the number of bits representing the input to A.

Typically, your suspicion about A will arise after not being able to find a polynomial-time algorithm using regular O-notation. Again, typically, if your hunch is correct, measuring in bits won't change much.