PRIM’S ALGORITHM for MST
(R. Prim 1957, but also V. Jarnik 1930)

Uses basic principle:
Given a subtree T of MST, the "lightest" edge connecting to a vertex not in T
can be added to T.

Grow one tree, incrementally adding one edge (& vertex)
PRIM'S ALGORITHM for MST

Every vertex not in T has a score $= \text{lightest edge weight connecting it to } T$

Identify lightest edge crossing cut:
1) identify min-score vertex, x
2) identify lightest edge from x to T

Brute force: $O(v)$ per MST edge
PRIM'S ALGORITHM for MST

Update scores when x joins T:
For each neighbor v_i of x
 if v_i not in T
 $c = \text{score}(v_i)$
 $\text{score}(v_i) \leftarrow \min \{c, w(x, v_i)\}$

Need to extract min score & decrease scores. How?
PRIM'S ALGORITHM for MST

For a detailed example of Prim's algorithm on this graph, please see full version of class notes.

Summary follows.
PRIM’S ALGORITHM for MST

1) start w/ any vertex s; set \(w(s) = 0 \)
2) set \(w(\neq s) = \infty \) & put all in pr. queue
PRIM'S ALGORITHM for MST

1) start w/ any vertex \(s \); set \(w(s) = 0 \)
2) set \(w(\neq s) = \infty \) & put all in pr. queue
3) while pr. queue not empty

\[\forall \] rounds
PRIM'S ALGORITHM for MST

1) start w/ any vertex \(S \); set \(w(s) = 0 \)
2) set \(w(\neq s) = \infty \) & put all in pr. queue
3) while pr. queue not empty
 \(x \): extract-min & add edge to \(T \)
 mark \(x \rightarrow \) in \(T \).

("add edge" \(\rightarrow \) find an edge from \(x \rightarrow T \), w/ min weight)
(if \(x = s \), no edge to add)
PRIM’S ALGORITHM for MST

1) start w/ any vertex s; set \(w(s) = 0 \)
2) set \(w(\neq s) = \infty \) & put all in pr.queue
3) while pr.queue not empty
 x: extract-min & add edge to T
 mark \(x \rightarrow \) in T.
PRIM’S ALGORITHM for MST

1) Start w/ any vertex \(s \); set \(w(s) = 0 \)
2) set \(w(\neq s) = \infty \) & put all in pr.queue
3) while pr.queue not empty
 \(x \): extract-min & add edge to \(T \)
 mark \(x \rightarrow \) in \(T \).
 for each unmarked neighbor \(q \) of \(x \)
 if \(w(q) > w(q,x) \) then decrease.
PRIM'S ALGORITHM for MST

1) start w/ any vertex s; set $w(s) = 0$
2) set $w(\neq s) = \infty$ & put all in pr. queue
3) while pr. queue not empty
 \[x: \text{extract-min} \; & \; \text{add edge to } T \]
 mark $x \rightarrow$ in T.
 for each unmarked neighbor q of x
 if $w(q) > w(q,x)$ then decrease.

$|V|$ rounds
\[\sum_{x \in V} (O(\log V) + O(\text{degree}(x))) \]
\[= O(V \log V) + O(E) \]
\[\sum_{x \in V} O(\text{degree}(x)) \cdot O(\log V) \]
\[= O(E) \cdot O(\log V) \]

Using adjacency list
\[\text{TOTAL} = O(E \log V) \]
PRIM'S ALGORITHM for MST

with Fibonacci heap
(beyond scope of COMP 160)

N rounds

$\sum_{x \in V} (O(\log V) + O(\text{degree}(x)))$

$= O(V\log V) + O(E)$

$\sum_{x \in V} \text{degree}(x) \cdot O(\log V)$

$= O(E) \cdot O(\log V)$

1) start with any vertex s; set $w(s) = 0$
2) set $w(\neq s) = \infty$ & put all in pr. queue
3) while pr. queue not empty
 x: extract-min & add edge to T
 mark $x \rightarrow$ in T.
 for each unmarked neighbor q of x
 if $w(q) > w(q, x)$ then decrease.

Using adjacency list

$\text{TOTAL} = O(E + V\log V)$
PRIM'S ALGORITHM for MST

Using adj. matrix
w/ weighted entries

& no pr. queue

\[V \text{ rounds} \]

scan array

scan row(x) in matrix

1) start w/ any vertex \(s \); set \(w(s) = 0 \)
2) set \(w(\neq s) = \infty \) & put all in pr. queue

3) while pr. queue not empty
 \[\exists v \text{ not in } T \]
 \[O(V) \{ \]
 \[x: \text{ extract-min } \& \text{ add edge to } T \]
 \[\text{mark } x \rightarrow \text{ in } T. \]
 \[O(V) \{ \]
 \[\text{for each unmarked neighbor } q \text{ of } x \]
 \[\text{if } w(q) > w(q,x) \text{ then decrease.} \]

\[O(V^2) \text{ time } \& \text{ space} \]