PRIM'S ALGORITHM for MST

Uses basic principle:
given a subtree T of MST, the "lightest" edge connecting to a vertex not in T can be added (greedily) to T.
PRIM'S ALGORITHM for MST

Instead of growing a forest, grow a single tree T.

We would like to identify these black edges between vertices in T & not in T ...

... & pick the lightest.
PRIM'S ALGORITHM for MST

4 types of edges:
- \(\text{in } T \): between vertices of \(T \) \(\rightarrow \) inactive
- not in \(T \): between vertices of \(T \) \(\rightarrow \) inactive
- only 1 end in \(T \) \(\rightarrow \) next to be considered
- others not in \(T \)

All vertices not in \(T \) have a weight = lightest edge connecting to \(T \).

Then we could extract min-weight vertex & add it (w/ edge) to \(T \).
PRIM'S ALGORITHM for MST

For each neighbor \(v_i \) of \(x \)

- if \(v_i \) not in \(T \)
 - \(c = \text{weight}(v_i) \)
 - \(\text{weight}(v_i) \leftarrow \min(c, w(x, v_i)) \)

(some neighbors of \(x \) might lose weight)

Next we must update the set of vertices not in \(T \) (incl. weights)
PRIM'S ALGORITHM for MST

Recap
- maintain set of vertices neighboring current free T (implicitly just maintain all not in T) w/ weights
- must be able to extract min & decrease values (= weight)
PRIM’S ALGORITHM for MST

extract min : $O(1)$
& update : $O(\log V)$

priority queue

Decrease key : $O(\log V)$
(swaps up)
PRIM'S ALGORITHM for MST

1) start w/ any vertex s; set $w(s) = 0$
2) set $w(\neq s) = \infty$ & put all in pr. queue
3) while pr. queue not empty
 x: extract-min & add edge to T
 mark $x \rightarrow$ in T.

("if $x = s$, no edge to add")
("add edge" \rightarrow find an edge from $x \rightarrow T$, w/ min weight)
PRIM’S ALGORITHM for MST

1) start w/ any vertex \(s \); set \(w(s) = 0 \)

2) set \(w(\neq s) = \infty \) & put all in pr.queue

3) while pr.queue not empty

 - \(x: \text{extract-min} \) & add edge to \(T \)
 - mark \(x \to \) in \(T \).

 - for each unmarked neighbor \(v \) of \(x \)
 - if \(w(v) > w(v, x) \) then decrease.

\(N \) rounds
PRIM'S ALGORITHM for MST

1) start w/ any vertex \(s \); set \(w(s) = 0 \)
2) set \(w(\neq s) = \infty \) & put all in pr. queue
3) while pr. queue not empty
 \[x: \text{extract-min} \] & add edge to \(T \)
 \[\text{mark } x \to \text{ in } T. \]
 for each unmarked neighbor \(v \) of \(x \)
 if \(w(v) > w(v,x) \) then decrease.

\(V \) rounds

total \(O(E) \)

All: \(O(E \cdot \log V) \) for connected
PRIM'S ALGORITHM for MST

Using adj. matrix w/ weighted entries & no pr. queue

1) start w/ any vertex s; set $w(s)=0$
2) set $w(\neq s) = \infty$ & put all in pr. queue
3) while pr. queue not empty
 $\exists v$ not in T
 - $O(V)\{x: \text{extract-min} \& \text{add edge to } T$
 - mark $x \rightarrow$ in T.
 - for each unmarked neighbor v of x
 - if $w(v) > w(v,x)$ then decrease.

$O(V^2)$ time & space
Final comments:

Both algorithms, by Kruskal and Prim, can be improved with more advanced data structures. This is discussed in CLRS briefly, but is beyond the scope of this class.