DEPTH FIRST SEARCH (DFS)

Follow an unvisited path for as long as possible.

When you reach a vertex w/ only previously-visited neighbors, back up (from where you came from) & try again.
As with BFS, mark visited nodes.
As with BFS, mark visited nodes.
As with BFS, mark visited nodes.

v_3 has nowhere to go
As with BFS, mark visited nodes.

V_3 came from $\text{Adj}[v_2]$
As with BFS, mark visited nodes.

V_2 continues its search

...but V_1 has been visited

Adjacency list

```
S -> V_1 -> V_2 -> V_4 -> V_5
V_1 -> V_2 -> V_3 -> S
V_2 -> S -> V_3 -> V_1
V_3 -> V_2 -> V_1
V_4 -> S
V_5 -> S
```
As with BFS, mark visited nodes.

Now v_2 has nowhere to go. v_2 came from $\text{Adj}[v_1]$.
As with BFS, mark visited nodes.

v_1 doesn't know v_3 is marked
As with BFS, mark visited nodes.

v_1 discovers v_3 is marked
As with BFS, mark visited nodes.

V_1 discovers S is marked and has nowhere else to go.

Adjacency list:

- $S
ightarrow V_1 \rightarrow V_2 \rightarrow V_4 \rightarrow V_5$
- $V_1 \rightarrow V_2 \rightarrow V_3 \rightarrow S$
- $V_2 \rightarrow S \rightarrow V_3 \rightarrow V_1$
- $V_3 \rightarrow V_2 \rightarrow V_1$
- $V_4 \rightarrow S$
- $V_5 \rightarrow S$
As with BFS, mark visited nodes.

v_1 came from $\text{Adj}[S]$
As with BFS, mark visited nodes. s continues on Adj[s]...
...discovers v₂ is marked etc
Find t from s:

Start with:
- mark s
- depth(s) = 0
- DFS(s)

Time: $O(|E|)$

$O(V+E)$ if not connected

DFS(u) // DFS starting at u

for every neighbor v_i of u // i.e. scan Adj[u]

if $v_i = t$, DONE

if v_i is unmarked

| mark v_i |
| set parent(v_i) → u |
| set depth(v_i) → $1 + \text{depth}(u)$ |

DFS(v_i) // only if you want to keep the structure
DFS on a non-connected graph G

For every vertex v_i in G
if v_i is unmarked
DFS(v_i)

It is also easy to keep a counter to keep track of the "time" at which each vertex is first encountered & fully processed.
DFS on a directed graph: similar to non-connected (process all vertices)

Iteratively, mark & explore if unmarked
DFS on a directed graph: similar to non-connected (process all vertices)
DFS on a directed graph: similar to non-connected (process all vertices)
DFS on a directed graph: similar to non-connected (process all vertices)
DFS on a directed graph: similar to non-connected (process all vertices)
DFS on a directed graph: similar to non-connected (process all vertices)
DFS on a directed graph: similar to non-connected (process all vertices)
DFS on a directed graph: similar to non-connected (process all vertices)
DFS on a directed graph : similar to non-connected (process all vertices)
DFS on a directed graph: similar to non-connected (process all vertices)

1, 2, 3, 4, 5

if \(v_3 \) came before \(v_2 \) in \(\text{Adj}[v_1] \)
DFS on a directed graph: similar to non-connected (process all vertices)

1, 2, 3, 4, 5

again
1, 2, 3, 4, 5

4 before 1, 5
... before 3?

3 before 1 in $\text{Adj}[4]$