SEARCHING IN GRAPHS

We already did the most basic form of search: (neighbor query)
SEARCHING IN GRAPHS

We already did the most basic form of search: (neighbor query)

In general, given a vertex \(s \), we want to locate some vertex \(t \), find a path in \(G \).
SEARCHING IN GRAPHS

We already did the most basic form of search: (neighbor query)

In general, given a vertex \(s \),

we want to locate some vertex \(t \), find a path in \(G \)

or we want to visit all vertices,
in a "local" organized manner.
BREADTH FIRST SEARCH (BFS) - The polite way to search
BREADTH FIRST SEARCH (BFS)

Start by checking if t is a neighbor of s. Look one step away from s.
BREADTH FIRST SEARCH (BFS)

Start by checking if \(t \) is a neighbor of \(s \).

Look one step away from \(s \).

If yes, done. If not, then check all neighbors-of-neighbors.
BREADTH FIRST SEARCH (BFS)

Start by checking if t is a neighbor of s.

- Look one step away from s.

If yes, done. If not, then check all neighbors-of-neighbors

- One step from each.

Either done, or repeat (dig deeper)
BREADTH FIRST SEARCH (BFS)

Start by checking if \(t \) is a neighbor of \(s \).

→ look one step away from \(s \).

If yes, done. If not, then check all neighbors-of-neighbors

→ one step from each.

Either done, or repeat (dig deeper) ... only on unexplored neighbors!
BREADTH FIRST SEARCH (BFS)

Start by checking if \(t \) is a neighbor of \(s \).

\[\rightarrow \text{look one step away from } s. \]

If yes, done. If not, then check \(\text{all } \) neighbors-of-neighbors \(\rightarrow \text{one step from each.} \)

Either done, or repeat (dig deeper) ... only on unexplored neighbors!
Search follows a tree pattern.
Search follows a tree pattern.

BFS extends depth by 1 at all possible nodes

always processing nodes closer to s first
Search follows a tree pattern.

BFS extends depth by 1 at all possible nodes

- always processing nodes closer to s first

- each node is processed only once (e.g., u)
If \(s \) and \(t \) are in the same connected component then the search will find \(t \).
\[d(s,t) = 4 \]

If \(s \) and \(t \) are in the same connected component then the search will find \(t \).

Even better, BFS will find the shortest path \(s \rightarrow t \).
If s and t are in the same connected component then the search will find t.

Even better, BFS will find a shortest path $s \rightarrow t$ (prove by contradiction)
If s and t are in the same connected component then the search will find t.

Even better, BFS will find the shortest path $s \rightarrow t$. (prove by contradiction)

Time? (supposing we can tell instantly whether a vertex is "new")

d($s, t) = 4$
If \(s \& t \) are in the same connected component then the search will find \(t \).

Even better, BFS will find a \textbf{the} shortest path \(s \rightarrow t \).
(prove by contradiction)

\(\text{time?} \) (supposing we can tell instantly whether a vertex is "new")

\(O(|E|) \) (in component of \(s \))
ALGO:

1. check $\text{Adj}[s] : v_1, \ldots, v_k$

 \leftarrow if $v_i = t$ DONE
Algo:

(i) check $\text{Adj}[s] : v_1 \ldots v_k$

if $v_i = t$ done

if $v_i \neq t$

mark as visited

put in queue : Q

Why a queue?
Algorithm:

1. mark \(s \)
2. check \(\text{Adj}[s] : v_1, \ldots, v_k \)
 - if \(v_i = t \) then done
 - mark as visited
 - if \(v_i \neq t \) put in queue : \(Q \)

\(Q : \overset{\text{in}}{v_1, v_2, v_3, v_4, v_5} \overset{\text{out}}{} \)
Algorithm:

(0) mark s

(1) check Adj[s]: v₁, ..., vₖ
 - if vᵢ = t done
 - if vᵢ ≠ t: mark as visited
 - put in queue: Q

(2) While Q not empty,
 - remove first vertex vₖ in Q
 - check Adj[vₖ]: u₀, ..., uₚ
Algo:

0) mark s
1) check Adj[s] : v₁...,vₖ
 → if vᵢ=t done
 → if vᵢ≠t put in queue : Q

2) While Q not empty,
 - remove first vertex vᵢ in Q
 - check Adj[vᵢ] : u₀...uₚ
 → if uᵢ=t done
 → if uᵢ≠t & unmarked
 put uᵢ in Q, mark uᵢ
Algorithm:

1. mark s
2. check $\text{Adj}[s]$: $v_1, ..., v_k$
 - if $v_i = t$ done
 - if $v_i \neq t$ mark as visited
 - put in queue Q
3. While Q not empty,
 - remove first vertex v_f in Q
 - check $\text{Adj}[v_f]$: $u_0, ..., u_p$
 - if $u_i = t$ done
 - if $u_i \neq t$ & unmarked
 - put u_i in Q
 - mark u_i
Algorithm:

1. Check \(\text{Adj}[s] : v_1, \ldots, v_k \)
 - If \(v_i = t \) done
 - If \(v_i \neq t \) mark as visited
 - Put in queue: \(Q \)

2. While \(Q \) not empty,
 - Remove first vertex \(v_f \) in \(Q \)
 - Check \(\text{Adj}[v_f] : u_0, u_2, v_3, u_4 \)
 - If \(u_i = t \) done
 - If \(u_i \neq t \) & unmarked
 - Put \(u_i \) in \(Q \)
 - Mark \(u_i \)
Algorithm:

1. check $\text{Adj}[s] : v_1, \ldots, v_k$
 - if $v_i = t$ done
 - if $v_i \neq t$ mark as visited
 - put in queue Q

2. While Q not empty,
 - remove first vertex v_f in Q
 - check $\text{Adj}[v_f] : u_0, u_5$
 - if $u_i = t$ done
 - if $u_i \neq t$ & unmarked put u_i in Q, mark u_i
Algo:

(0) mark \(s \)

(1) check Adj[\(s \)]: \(v_1 \) \(\ldots \) \(v_k \)
 if \(v_i = t \) done
 if \(v_i \neq t \)
 mark as visited
 put in queue : \(Q \)

(2) While \(Q \) not empty,
 - remove first vertex \(v_f \) in \(Q \)
 - check Adj[\(v_f \)]: \(u_1 \) \(\ldots \) \(u_p \)
 if \(u_i = t \) done
 if \(u_i \neq t \) & unmarked
 put \(u_i \) in \(Q \), mark \(u_i \)

Q: \(\overset{\text{in}}{v_1} v_2 v_3 v_4 v_5 \overset{\text{out}}{v_2 v_3 v_4 v_5 u_1 u_2 u_3 v_3 v_4 v_5 u_1 u_2 u_3 u_4 v_4 v_5 u_1 u_2 u_3 u_4 u_5 v_5 u_1 u_2 u_3 u_4 u_5 u_6} \)
Algorithm:

1. Check $\text{Adj}[s]: v_1, \ldots, v_k$
 - If $v_i = t$, done
 - If $v_i \neq t$, mark as visited
 - Put in queue Q

2. While Q not empty,
 - Remove first vertex v_f in Q
 - Check $\text{Adj}[v_f]: u_1, \ldots, u_p$
 - If $u_i = t$, done
 - If $u_i \neq t$ & unmarked, put u_i in Q, mark u_i
Algo:

1. mark s
2. check $\text{Adj}[s] = v_1, ... , v_k$
 - if $v_i = t$ then done
 - else mark as visited
 - if $v_i \neq t$ then put in queue Q

3. While Q not empty,
 - remove first vertex v_f in Q
 - check $\text{Adj}[v_f] = u_1, ... , u_p$
 - if $u_i = t$ then done
 - else if $u_i \neq t$ and unmarked then put u_i in Q, mark u_i
Algorithm:

1. Mark s
2. Check $\text{Adj}[s] : v_1, \ldots, v_k$
 - If $v_i = t$ done
 - Mark as visited
 - If $v_i \neq t$ put in queue: Q

3. While Q not empty,
 - Remove first vertex v_f in Q
 - Check $\text{Adj}[v_f] : u_1, \ldots, u_p$
 - If $u_i = t$ done
 - If $u_i \neq t$ & unmarked put u_i in Q, mark u_i

Q: $v_1, v_2, v_3, v_4, v_5 \leftarrow \text{in}$

Q: v_2, v_3, v_4, v_5, u_1, u_2, u_3 \underline{remove}

Q: v_3, v_4, v_5, u_1, u_2, u_3, u_4

Q: v_4, v_5, u_1, u_2, u_3, u_4, u_5

Q: v_5, $u_1, u_2, u_3, u_4, u_5, u_6$

Q: $u_1, u_2, u_3, u_4, u_5, u_6$

Q: $u_2, u_3, u_4, u_5, u_6, x_1, x_2, x_3, x_4$

etc
(0) mark \(s \)

(1) check \(\text{Adj}[s] : v_1, ..., v_k \)

→ if \(v_i = t \) done
→ if \(v_i \neq t \)
 • mark as visited
 • put in queue \(: Q \)

(2) While \(Q \) not empty,

 - remove first vertex \(v_f \) in \(Q \)
 - check \(\text{Adj}[v_f] : u_1, ..., u_p \)
 → if \(u_i = t \) done
 → if \(u_i \neq t \) & unmarked
 put \(u_i \) in \(Q \).
 mark \(u_i \)
- mark s & put in Q
- $\text{depth}(s) = 0$

While Q not empty,

- $x = \text{dequeue}(Q)$
 - check $\text{Adj}[x]: u, ..., u_p$
 - if $u_i = t$ done
 - if $u_i \neq t$ mark as visited
 - put in queue Q

(0) mark s

(1) check $\text{Adj}[s]: v, ..., v_k$
 - if $v_i = t$ done
 - if $v_i \neq t$ mark as visited
 - put in queue Q

(2) While Q not empty,
 - remove first vertex v_f in Q
 - check $\text{Adj}[v_f]: u, ..., u_p$
 - if $u_i = t$ done
 - if $u_i \neq t$ & unmarked
 - put u_i in Q
just the search process