SEARCHING IN GRAPHS

We already did the most basic form of search: (neighbor query)

In general, given a vertex \(s \), we want to locate some vertex \(t \), find a path in \(G \)

or we want to visit all vertices, in a "local" organized manner.
BREADTH FIRST SEARCH (BFS)

Start by checking if \(t \) is a neighbor of \(s \).

\(\rightarrow \) Look one step away from \(s \).

If yes, done. If not, then check all neighbors of neighbors.

\(\rightarrow \) One step from each.

Either done, or repeat (dig deeper) ... only on unexplored neighbors!
Search follows a tree pattern.

BFS extends depth by 1 at all possible nodes

- always processing nodes closer to S first
- if any node is rediscovered, pretend it didn't happen (e.g. u)
If s and t are in the same connected component then the search will find t.

Even better, BFS will find a shortest path $s \rightarrow t$.
(prove by contradiction)

(time? (supposing we can tell instantly whether a vertex is "new")

$O(IEI)$ (in component of s)
Algorithm:

1. Mark s.

2. While Q is not empty,
 - Remove first vertex v_f in Q.
 - Check $\text{Adj}[v_f]$: u_1, \ldots, u_p.
 - If $v_f = t$, done.
 - If $v_f \neq t$ and unmarked, put u_i in Q.
 - Mark as visited.

Q: $v_1, v_2, v_3, v_4, v_5 \leftarrow \text{in}$

Out: $v_2, v_3, v_4, v_5, u_1, u_2, u_3, u_4, u_5, u_6, x_1, x_2, x_3, x_4$
- Mark S & put in Q.
- depth(S) = 0

While Q not empty,
 x = dequeue(Q)
 check Adj[x]: u, ... up:
 if u is unmarked
 mark u; & put in Q.
 depth(u) = 1 + depth(x)
 parent(u) = x; u; → child(x)
 if v_i = t done
 if v_i ≠ t, mark as visited
 put in queue: Q

(0) Mark S
(1) Check Adj[S]: v_i, ... v_k
 if v_i = t done
 if v_i ≠ t mark as visited
 put in queue: Q

(2) While Q not empty,
 - remove first vertex v_f in Q
 - check Adj[v_f]: u_i, ... u_p
 if u_i = t done
 if u_i ≠ t & unmarked
 put u_i in Q.
 mark u_i

just the search process
DEPTH FIRST SEARCH (DFS)

- Follow an unvisited path for as long as possible.
- When you reach a vertex with only previously-visited neighbors, back up (from where you came from) & try again.
As with BFS, mark visited nodes.

Adjacency list:

- S → V₁ → V₂ → V₄ → V₅
- V₁ → V₂ → V₃ → S
- V₂ → S → V₃ → V₁
- V₁ → V₂ → V₃
- V₄ → S
- V₅ → S
As with BFS, mark visited nodes.
As with BFS, mark visited nodes.

\(v_3 \) has nowhere to go.
As with BFS, mark visited nodes.

V_3 came from $\text{Adj}[V_2]$
As with BFS, mark visited nodes.

V_2 continues its search.
As with BFS, mark visited nodes.

V₂ continues its search
...but v₁ has been visited
As with BFS, mark visited nodes.

Now \(v_2 \) has nowhere to go. \(v_2 \) came from \(\text{Adj}[v_1] \)
As with BFS, mark visited nodes.

v_1 doesn't know v_3 is marked.
As with BFS, mark visited nodes.

v_1 discovers v_3 is marked

Adjacency list:

- $S \rightarrow V_1 \rightarrow V_2 \rightarrow V_4 \rightarrow V_5$
- $V_2 \rightarrow S \rightarrow V_3 \rightarrow V_1$
- $V_3 \rightarrow V_2 \rightarrow V_1$
- $V_4 \rightarrow S$
- $V_5 \rightarrow S$
As with BFS, mark visited nodes.

V_1 discovers S is marked and has nowhere else to go.
As with BFS, mark visited nodes.

\[V_1 \] came from \(\text{Adj}[S] \)
As with BFS, mark visited nodes.

s continues on Adj[s]...

...discovers v_2 is marked

etc
DFS(s)
- mark s
- for every neighbor \(v_i\) of s
 if \(v_i = t\), DONE
 if \(v_i\) is unmarked
 - set parent\((v_i)\) \(\rightarrow\) s
 - set depth\((v_i)\) \(\rightarrow\) 1 + depth\((s)\)
 - DFS\((v_i)\)

Data structure?

Stack

Time: \(O(1|E|)\)
\(|E|\) : size of component

(we use every edge twice & \(E > V - 1\))
DFS on a non-connected graph G

For every vertex v_i in G
if v_i is unmarked
DFS(v_i)

It is also easy to keep a counter to keep track of the "time" at which each vertex is first encountered & fully processed

time: $O(V+E)$
DFS on a directed graph: similar to non-connected (process all vertices)
DFS on a directed graph: similar to non-connected (process all vertices)
DFS on a directed graph: similar to non-connected (process all vertices)

1, 2, 3, 4, 5
Adj(v1): v3, v2, ...

again
1, 2, 3, 4, 5

4 before 1, 5
... before 3
... etc

3 before 1 in
Adj[4]