
Succinct Data Structures
Calculating Rank and Select

Sam Heilbron

(1) 1 1 0 1 1 1 0 1 0 0 0 0 0 0
 A B C D E F G

2n + 1 bits

Let the tree
be represented
by the bit string
below

(1) 1 1 0 1 1 1 0 1 0 0 0 0 0 0
 A B C D E F G

1: Internal Node
0: External Node

Unifies data: Ensures
that each node has
either 2 children or 0
children

(1) 1 1 0 1 1 1 0 1 0 0 0 0 0 0
 A B C D E F G

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(1) 1 1 0 1 1 1 0 1 0 0 0 0 0 0
 A B C D E F G

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Navigation
At ith node:

Left child = 2i
Right child = 2i + 1

Parent = ⌊i/2⌋

(Proof by induction)

(1) 1 1 0 1 1 1 0 1 0 0 0 0 0 0
 A B C D E F G

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Navigation
At ith node:

Left child = 2i
Right child = 2i + 1

Parent = ⌊i/2⌋

(Proof by induction)

Issue
Working in different namespaces

On one hand, we’re counting by internal
nodes (number of 1’s)

On the other hand, we’re counting by
position in the array (internal and external
nodes)

(1) 1 1 0 1 1 1 0 1 0 0 0 0 0 0
 A B C D E F G

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

We need some mechanism for counting 1’s, and 0’s and 1’s

(1) 1 1 0 1 1 1 0 1 0 0 0 0 0 0
 A B C D E F G

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

We need some mechanism for counting 1’s, and 0’s and 1’s

Rank1(i) = # 1’s at or before position i (Internal)

(1) 1 1 0 1 1 1 0 1 0 0 0 0 0 0
 A B C D E F G

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

We need some mechanism for counting 1’s, and 0’s and 1’s

Rank1(i) = # 1’s at or before position i (Internal)

Select1(j) = Position of the jth 1 bit (Internal +External)

(1) 1 1 0 1 1 1 0 1 0 0 0 0 0 0
 A B C D E F G

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

We need some mechanism for counting 1’s, and 0’s and 1’s

Rank1(i) = # 1’s at or before position i (Internal)

Select1(j) = Position of the jth 1 bit (Internal +External)

left-child(i) = 2 * Rank1(i)
right-child(i) = 2 * Rank1(i) + 1
parent(i) = Select1(⌊i/2⌋)

(1) 1 1 0 1 1 1 0 1 0 0 0 0 0 0
 A B C D E F G

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

We need some mechanism for counting 1’s, and 0’s and 1’s

Rank1(i) = # 1’s at or before position i (Internal)

Select1(j) = Position of the jth 1 bit (Internal +External)

left-child(i) = 2 * Rank1(i)
right-child(i) = 2 * Rank1(i) + 1
parent(i) = Select1(⌊i/2⌋)

If rank, select can be done in
constant time, so too can

left-child, right-child, and parent

Goal: o(n) space

Use a lookup table for bit strings of length x:

Bit strings of
length x

possible answers to
query (can query each i

of n bits)

Bits for each answer
(between 0 and x-1)O(* *)

Rank

Goal: o(n) space

Use a lookup table for bit strings of length x:

2X possible answers to
query (can query each i

of n bits)

Bits for each answer
(between 0 and x-1)O(* *)

Goal: o(n) space

Use a lookup table for bit strings of length x:

2X x Bits for each answer
(between 0 and x-1)O(* *)

Goal: o(n) space

Use a lookup table for bit strings of length x:

2X x log(x)O(* *)

Goal: o(n) space

Use a lookup table for bit strings of length x:

O(2X * x * logx)

Goal: o(n) space

Use a lookup table for bit strings of length x:

O(2X * x * logx)

In order to achieve o(n) space, what is x?

Goal: o(n) space

Use a lookup table for bit strings of length x:

O(2X * x * logx)

In order to achieve o(n) space, what is x?

Let x = ½ lg n → O(√n * lg(n) * lg(lg(n)))

Goal: o(n) space

Use a lookup table for bit strings of length x:

O(2X * x * logx)

In order to achieve o(n) space, what is x?

Let x = ½ lg n → O(√n * lg(n) * lg(lg(n)))

If we can have bit strings of logarithmic size, we’re all set!

How do we reduce linearly sized bit strings

Step 1: Reduce to size lg2n

lg2n lg2n lg2n

How do we reduce linearly sized bit strings

Step 1: Reduce to size lg2n

lg2n lg2n lg2n

Store the cumulative rank so far

How do we reduce linearly sized bit strings

Step 1: Reduce to size lg2n

lg2n lg2n lg2n

Store the cumulative rank so far

sections # bits /
sectionO(*)

How do we reduce linearly sized bit strings

Step 1: Reduce to size lg2n

lg2n lg2n lg2n

Store the cumulative rank so far

n/lg2n lg(n)O(*)

How do we reduce linearly sized bit strings

Step 1: Reduce to size lg2n

lg2n lg2n lg2n

Store the cumulative rank so far

O(n / lgn) ≈ o(n)

How do we reduce linearly sized bit strings?

Step 2: Reduce each chunk to size ½ lg(n)

½ lg(n) ½ lg(n) ½ lg(n)

How do we reduce linearly sized bit strings?

Step 2: Reduce each chunk to size ½ lg(n)

½ lg(n) ½ lg(n) ½ lg(n)

Store the cumulative rank within the chunk

How do we reduce linearly sized bit strings?

Step 2: Reduce each chunk to size ½ lg(n)

½ lg(n) ½ lg(n) ½ lg(n)

Store the cumulative rank within the chunk

Why not just subdivide before? Why does this help?

How do we reduce linearly sized bit strings?

Step 2: Reduce each chunk to size ½ lg(n)

½ lg(n) ½ lg(n) ½ lg(n)

Store the cumulative rank within the chunk

Why not just subdivide before? Why does this help?

The size of a chunk is lg2n, so you only need lg(lg(n)) bits to write
down the cumulative rank

How do we reduce linearly sized bit strings?

Step 2: Reduce each chunk to size ½ lg(n)

½ lg(n) ½ lg(n) ½ lg(n)

Store the cumulative rank within the chunk

sections # bits /
sectionO(*)

How do we reduce linearly sized bit strings?

Step 2: Reduce each chunk to size ½ lg(n)

½ lg(n) ½ lg(n) ½ lg(n)

Store the cumulative rank within the chunk

n/lg(n) lg(lg(n))O(*)

How do we reduce linearly sized bit strings?

Step 2: Reduce each chunk to size ½ lg(n)

½ lg(n) ½ lg(n) ½ lg(n)

Store the cumulative rank within the chunk

O(n/lg(n) * lg(lg(n))) ≈ o(n)

How do we reduce linearly sized bit strings?

Step 2: Reduce each chunk to size ½ lg(n)

½ lg(n) ½ lg(n) ½ lg(n)

Store the cumulative rank within the chunk

O(n/lg(n) * lg(lg(n))) ≈ o(n)

We’re all set!

How do we reduce linearly sized bit strings?

Step 3: Calculate Rank

1. Find which chunk you’re in (integer division, since each chunk
can be stored in an array from Step 1)

2. Find which subchunk you’re in (each subchunk stored in an array
from Step 2)

3. Find rank of element in subchunk (use lookup table)

Rank = rank of chunk +
rank of subchunk +
rank of element in subchunk

O(1) time, O(n/lg(n) * lg(lg(n))) space

How do we reduce linearly sized bit strings?

Step 4: Calculate Select

Select is handled in a very similar way to rank

(1) 1 1 0 1 1 1 0 1 0 0 0 0 0 0
 A B C D E F G

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

We need some mechanism for counting 1’s, and 0’s and 1’s

Rank1(i) = # 1’s at or before position i (Internal)

Select1(j) = Position of the jth 1 bit (Internal +External)

left-child(i) = 2 * Rank1(i)
right-child(i) = 2 * Rank1(i) + 1
parent(i) = Select1(⌊i/2⌋)

If rank, select can be done in
constant time, so too can

left-child, right-child, and parent

(1) 1 1 0 1 1 1 0 1 0 0 0 0 0 0
 A B C D E F G

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

We need some mechanism for counting 1’s, and 0’s and 1’s

Rank1(i) = # 1’s at or before position i (Internal)

Select1(j) = Position of the jth 1 bit (Internal +External)

left-child(i) = 2 * Rank1(i)
right-child(i) = 2 * Rank1(i) + 1
parent(i) = Select1(⌊i/2⌋)

Since rank, select can be done in
constant time, so too can

left-child, right-child, and parent

