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2n + 1 bits

Let the tree 
be represented 
by the bit string 
below
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1:  Internal Node
0: External Node

Unifies data: Ensures 
that each node has 
either 2 children or 0 
children
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Navigation
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Left child = 2i
Right child = 2i + 1

Parent = ⌊i/2⌋

(Proof by induction)
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Navigation
At ith node:

Left child = 2i
Right child = 2i + 1

Parent = ⌊i/2⌋

(Proof by induction)

Issue
Working in different namespaces

On one hand, we’re counting by internal 
nodes (number of 1’s)

On the other hand, we’re counting by 
position in the array (internal and external 
nodes)
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We need some mechanism for counting 1’s, and 0’s and 1’s

Rank1(i) =  # 1’s at or before position i (Internal)

Select1(j) = Position of the jth 1 bit (Internal +External)

left-child(i) =  2 * Rank1(i)
right-child(i) =  2 * Rank1(i) + 1
parent(i) =  Select1(⌊i/2⌋)

If rank, select can be done in 
constant time, so too can 

left-child, right-child, and parent



Goal: o(n) space

Use a lookup table for bit strings of length x:

Bit strings of 
length x

possible answers to 
query (can query each i 

of n bits)

Bits for each answer 
(between 0 and x-1)O( * * )

Rank
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Goal: o(n) space

Use a lookup table for bit strings of length x:

O(2X  *  x  * logx)

In order to achieve o(n) space, what is x?

Let x = ½ lg n → O(√n * lg(n) * lg(lg(n)))

If we can have bit strings of logarithmic size, we’re all set!
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How do we reduce linearly sized bit strings

Step 1: Reduce to size lg2n

lg2n lg2n lg2n

Store the cumulative rank so far

O(n / lgn) ≈ o(n)
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How do we reduce linearly sized bit strings?

Step 2: Reduce each chunk to size ½ lg(n)

½ lg(n) ½ lg(n) ½ lg(n)

Store the cumulative rank within the chunk

Why not just subdivide before? Why does this help?

The size of a chunk is lg2n, so you only need lg(lg(n)) bits to write 
down the cumulative rank
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Step 2: Reduce each chunk to size ½ lg(n)

½ lg(n) ½ lg(n) ½ lg(n)

Store the cumulative rank within the chunk

O( n/lg(n) * lg(lg(n)) ) ≈ o(n)

We’re all set!



How do we reduce linearly sized bit strings?

Step 3: Calculate Rank

1. Find which chunk you’re in (integer division, since each chunk 
can be stored in an array from Step 1)

2. Find which subchunk you’re in (each subchunk stored in an array 
from Step 2)

3. Find rank of element in subchunk (use lookup table)

Rank = rank of chunk + 
rank of subchunk +
rank of element in subchunk

O(1) time, O( n/lg(n) * lg(lg(n)) ) space



How do we reduce linearly sized bit strings?

Step 4: Calculate Select

Select is handled in a very similar way to rank
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