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Introduction 

 

In this paper we sought to put together a practical comparison of the optimality of static binary                 
search tree implementations. Therefore, we implemented five different binary search tree           
algorithms and compared static operations. We look at construction time and expected depth to              
determine the best implementation based on number of searches before rebuilding. We used real              
world data, Herman Melville’s ​Moby Dick​, to generate realistic probability distributions using            
word frequency. However, we also wanted to observe the performance of the algorithms in more               
extreme cases, so we additionally generated some edge test cases to test particular types of               
behavior. 
 
We implemented a suite of static binary tree implementations. Since we were looking at              
optimality, we started with Knuth’s 1970 optimal binary tree implementation, which guarantees            
an optimal implementation given probabilities for all keys and leaves in the tree. In the same                
paper Knuth mentions two potential methods for approximately optimal trees with reduced build             
time. One of which was fully proven and demonstrated by Kurt Mehlhorn, and the other of                
which was deemed less optimal. We implemented both of these methods to get a full look at                 
approximate methods. We also implemented two non-optimal methods, which did not consider            
the probabilities of keys and leaves during the construction process. We implemented AVL trees,              
which approach optimality through simple balancing. We also implemented an unbalanced           
binary search tree as a baseline test, where values were simply inserted in random order. Each of                 
these algorithms is further described at a high level with resources listed for further study. 
 
Algorithms Studied 

 
Knuth’s Algorithm for Optimal Trees 
 
In his 1970 paper “Optimal Binary Search Trees”, Donald Knuth proposes a method to find the                
optimal binary search tree with a given set of values and the probability of looking up each value                  
and searching for a value not in the tree between each consecutive keys. This method relies on                 
dynamic programming to get a construction time of O(n​2​). While this is slow, this method is                
guaranteed to produce a tree with the shortest possible expected search depth. 
 



This method works by first generating a table that calculates the probability of each complete               
subtree. A complete subtree is one that contains all the values between two keys within the tree.                 
Using this table, the algorithm then, for every complete subtree, adds the overall probability of               
the subtree to the minimum composition of the two subtrees that would exist for every possible                
root. In this process the root that is picked is also recorded. At the end the value for the whole                    
tree is the expected search depth and the saved roots can be used to form the tree. 
 
This method has a construction time of O(n​3​), but Knuth includes a speedup that results in the                 
reported time of O(n​2​). This speedup comes when choosing the root for each subtree. Instead of                
looking at every possible root, it only looks at the roots between or equal to the roots of the                   
subtree missing the smallest and largest nodes. This generates a telescoping effect which allows              
this portion of the algorithm to then average to constant time as it results in O(n) time divided by                   
n​ subtrees, giving O(1) on average.  
 
This will result in the tree with the best possible expected search depth, but because this is not                  
necessarily correlated with a balanced tree, it does not guarantee a tree of logarithmic height. On                
average, however, it guarantees at most logarithmic lookup as it’s expected depth is less than or                
equal to that of any other tree formation. As this is a static method, insertion beyond the original                  
construction and deletion are not allowed.  
 
The tree to the right has been generated with the following           
information. The key and leaf probabilities visually represent        
the values they represent, with the keys probabilities directly         
below the key they represent and the leaves in the          
corresponding gap between values. 
Key Values:                [2,     4,    6,    8,   10] 
Key probabilities:      [.17, .15, .13, .06, .08] 
Leaf probabilities:  [.02, .12, .02, .04, .15, .06] 
 
Calculated Expected Search Depth: 1.33 
 
Resources for Further Research: 
Optimum Binary Search Trees by Knuth 
 
Knuth’s “Rule 1” for Approximately Optimal Trees 
  
Knuth’s paper “Optimal Binary Search Trees” also mentions two rules of thumb that may lead to                
approximately optimal search trees in o(n ​2​) time. The first rule described is quite simple: for               
every given probability range, always select the root to be the key with the highest probability,                

http://www.inrg.csie.ntu.edu.tw/algorithm2014/presentation/Knuth71.pdf


then continue on the left and right sub-ranges to create left and right children. The intuition                
behind this heuristic makes sense: this approach will naturally force high-probability keys to             
appear close to the root of the tree, possibly decreasing the expected search depth for the tree.                 
However, it fails to consider how all other keys may be partitioned, possibly leading to a                
non-optimal tree. In Kurt Mehlhorn’s paper “Nearly Optimal Binary Search Trees” (1975), the             
author provides a short proof to demonstrate why this rule may lead to bad search trees. 
  
However, there was no mention of the expected ​practical performance of this algorithm, so we               
sought to implement it alongside several other algorithms to see how it would compare. The               
algorithm was quite straightforward to code: for every sub-range of probabilities, the highest             
probability was tracked, a node was created for the key associated with that probability, and its                
left- and right-hand children were assigned to the result of iterations on the left and right                
subranges. In the event that multiple keys shared the same maximum probability, the median              
index was picked as the root. This helped to provide more balance in the event that many keys in                   
a given range shared the same probability. 
  
We predicted that the runtime of this algorithm would be O(n*log(n)) in the average case, as it                 
appears to have similar behavior to quicksort with randomized pivot selection. In each case, an               
initial array of size ​n is searched/partitioned in O(n) time, and then the same operations are                
recursively performed on subdivisions of the array until a base case is reached. In each case, the                 
split may be good for efficient performance (a nearly even split) or bad (a split near one of the                   
edges). A randomized analysis of quicksort demonstrates that the algorithm is expected to run in               
O(n*log(n)) time. Thus, we expected that if probability values were roughly randomly            
distributed throughout the sorted list of keys, the runtime for Knuth’s “Rule 1” algorithm would               
also be O(n*log(n)). Because the algorithm must operate on a list of probabilities sorted by key,                
there is no randomization or shuffling we can do to improve our confidence that the algorithm                
will run efficiently. 
 
The tree to the right has been generated with the following           
information. The key and leaf probabilities visually       
represent the values they represent, with the keys        
probabilities directly below the key they represent and the         
leaves in the corresponding gap between values. 
Key Values:                [2,     4,    6,    8,   10] 
Key probabilities:      [.17, .15, .13, .06, .08] 
Leaf probabilities:  [.02, .12, .02, .04, .15, .06] 
 
Calculated Expected Search Depth: 1.99 
 



Resources for Further Research: 
Optimum Binary Search Trees by Knuth 
 
Knuth’s “Rule 2” (Mehlhorn’s Approximation Algorithm) 
  
Knuth’s second suggested rule was more interesting: for every given probability range, always             
select the root that equalizes the sums of weights to its left and right as much as possible. This                   
also has clear intuition behind it. If each node in the tree can roughly split the weight in half, no                    
single key will ever be too far out of reach. Even if the ​shape of the tree is not balanced, its                     
weight distribution ​ will be. 
  
Mehlhorn’s paper outlines an algorithm for building a tree this way. For every sub-range of               
probabilities, a pointer is initialized at each end of the array, each pointing to a candidate root.                 
The sum of weights to the left and right of each pointer is tracked, given that the total sum of                    
every probability range is always known (the initial call of the algorithm will have a probability                
sum of 1, and sub-range sums can be propagated forward after that). As the pointers move                
towards the center of the array, weight differences are updated in O(1) time, and as soon as one                  
pointer detects that its weight balance is becoming ​more ​uneven instead of ​less uneven, the root                
leading to the best weight split has been found. A node is created, and the algorithm continues to                  
build left and right children. 
  
The use of two pointers aids the runtime analysis of the algorithm, which Mehlhorn demonstrates               
to be O(n*log(n)). He also provides an upper bound on the expected tree height for trees created                 
with this algorithm, which he cites as 2 + 1.44 * H, where H is the entropy of the distribution.                    
This is in comparison to the lower bound on expected height of the optimal tree, which is 0.63 *                   
H. Therefore, depending on the size of our distribution, we expected that Mehlhorn’s             
approximation algorithm would not build trees with expected heights exceeding 2-3x the optimal             
height. Given that Mehlhorn’s algorithm boasted an O(n*log(n)) runtime, we anticipated this            
algorithm being very compelling for practical usage. 
 
The tree to the right has been generated with the following           
information. The key and leaf probabilities visually       
represent the values they represent, with the keys        
probabilities directly below the key they represent and the         
leaves in the corresponding gap between values. 
Key Values:                [2,     4,    6,    8,   10] 
Key probabilities:      [.17, .15, .13, .06, .08] 
Leaf probabilities:  [.02, .12, .02, .04, .15, .06] 
 

http://www.inrg.csie.ntu.edu.tw/algorithm2014/presentation/Knuth71.pdf


Calculated Expected Search Depth: 1.41 
 
Resources for Further Research: 
Nearly Optimal Binary Search Trees by Mehlhorn 
 
AVL Tree 
 
AVL trees are balanced binary search trees, invented by Adelson-Velsky and Landis in 1962.              
Instead of balancing the tree by looking at probability weights as with Knuth and Mehlhorn, an                
AVL tree simply balances height. We were curious to see how a height-focused tree would fare                
when measured alongside the above weight-focused algorithms. An AVL tree is simply one             
where for all nodes in the tree the height of its children differs by at most 1. This property is                    
maintained through rotations back up the tree when a new node is inserted. The tree will only                 
ever have to perform rotations at one place for any new insertion. Through this property, we can                 
determine that the depth of an AVL tree will be at most 1.4*log(n). All operations, lookup,                
insertion, and deletion, are O(log(n)) in an AVL tree. When using the AVL tree our values were                 
randomly shuffled before being inserted. 
 
The tree to the right has been generated to use on the            
following dataset. The key and leaf probabilities visually        
represent the values they represent, with the keys        
probabilities directly below the key they represent and the         
leaves in the corresponding gap between values. 
Key Values:                [2,     4,    6,    8,   10] 
Key probabilities:      [.17, .15, .13, .06, .08] 
Leaf probabilities:  [.02, .12, .02, .04, .15, .06] 
 
The key values were inserted in the following random order as the algorithm did not use                
probabilities:  
[8, 10, 6, 4, 2] 
 
Calculated Expected Search Depth: 1.44 
 
Resources for Further Research: 
AVL Tree and Its Operations by Nair, Oberoi, and Sharma 
Visualization 
 
 
 

https://people.mpi-inf.mpg.de/~mehlhorn/ftp/mehlhorn3.pdf
http://ijirt.org/vol1/paperpublished/IJIRT101072_PAPER.pdf
https://visualgo.net/en/bst


Binary Search Tree​ ​(Baseline) 
  
The expected depth of a randomly built basic binary search tree is O(log(n)) (Cormen et al.                
section 12.4). Furthermore, we saw in lecture that the expected max depth upper bound has a                
leading constant of ~3, which is not much larger than the upper bound leading constant of 1.4 for                  
AVL trees. In practice, we found that the depth constant for randomly built trees was around 2.5,                 
certainly falling within the proven upper bound. With this information in mind, we sought to               
include a simple baseline benchmark to compare against more the more intentional optimal             
binary search tree algorithms, as well as the AVL tree. Here, we insert all ​n keys into the tree in                    
random order, taking O(n*log(n)) time. 
 
The tree to the right has been generated to use on the            
following dataset. The key and leaf probabilities visually        
represent the values they represent, with the keys        
probabilities directly below the key they represent and the         
leaves in the corresponding gap between values. 
Key Values:                [2,     4,    6,    8,   10] 
Key probabilities:      [.17, .15, .13, .06, .08] 
Leaf probabilities:  [.02, .12, .02, .04, .15, .06] 
 
The key values were inserted in the following random order          
as the algorithm did not use probabilities:  
[8, 10, 6, 4, 2] 
 
Calculated Expected Search Depth: 1.73 
 
Results and Discussion 

 

Our tests used portions of the novel ​Moby Dick​ to form a word frequency distribution. 
 

Small, Medium and Large Frequency Distributions 
 
Small (2,011 keys) 

 Knuth O(n ​2​) Mehlhorn Rule 1 AVL BST 

Build Time (s) 6.949 0.030 0.023 0.060 0.013 

Expected 

Search Depth 

7.43 7.94 9.29 9.73 13.81 



 
Medium (7,989 keys) 

 Knuth O(n ​2​) Mehlhorn Rule 1 AVL BST 

Build Time (s) 173.649 0.128 0.109 0.300 0.075 

Expected 

Search Depth 

8.27 8.88 11.73 11.77 16.10 

 
Large (13,557 keys) 

 Knuth O(n ​2​) Mehlhorn Rule 1 AVL BST 

Build Time (s) 573.640 0.216 0.285 0.599 0.176 

Expected 

Search Depth 

8.43 9.22 12.62 12.60 16.70 

 

 
 



 
 

 
 



Several patterns are apparent. First, Knuth’s optimal algorithm consistently makes the best trees             
(having the smallest expected depth) and consistently takes the most time to build. Its O(n​2​)               
runtime separates it from its competitors, which all run in O(n*log(n)) time. Mehlhorn’s             
approximation algorithm performs most impressively, coming extremely close to the best           
possible expected depth in all cases and taking orders of magnitude less time to run. In the large                  
distribution benchmark in particular, Mehlhorn’s algorithm runs over 2,700x faster than the            
optimal algorithm does. Memory usage of these two algorithms is also quite different, with              
Knuth’s algorithm having O(n​2​) space complexity and Mehlhorn’s having O(n) space           
complexity. We did a single memory usage benchmark on the large dataset. Knuth’s algorithm              
used 3.47GB of memory, while Mehlhorn’s used only 34.16MB of memory, roughly 100x less. 
 
Our prediction that Knuth’s “Rule 1” heuristic would run in O(n*log(n)) time was proved              
correct, based on how the runtime scales with its neighboring algorithms. Interestingly, “Rule 1”              
does not result in exceedingly bad trees. In fact, Rule 1 tends to produce trees that are at most                   
50% worse than the optimal arrangement. In Mehlhorn’s original paper, he provides a short              
example of why the rule will not lead to nearly optimal trees before dismissing it and focusing on                  
the better heuristic. As it turns out, the intuition of putting popular nodes near the root is not                  
entirely illogical. 
 
Finally, the performance of the two traditional binary search trees is also interesting to analyze.               
The unbalanced binary search tree builds faster than any of the other algorithms, evidently due to                
minimal overhead in the algorithm ( ​n nodes are inserted into a growing tree with no additional                
bookkeeping necessary). The expected depths of the unbalanced tree tend to be roughly twice as               
deep as the optimal tree. We predicted the depth would still be logarithmic, but it is interesting to                  
see that there is only a constant of 2 separating the expected search performance for the most                 
optimal tree and a randomly constructed tree. 
 
Unlike the unbalanced binary search tree, the AVL tree ​guarantees logarithmic depth with an              
expected depth of 1.4*log(n). Interestingly, the AVL tree’s expected depth tends to fall roughly              
halfway between that of the optimal tree and the unbalanced tree. Its overall performance is quite                
similar to Rule 1. 
 
 
 
 
 
 
 



When benchmarking the average search times for each algorithm, we developed a rule of thumb               
for calculating real CPU search time based on depth: ​half expected depth, in microseconds. ​For               
example, A tree with an expected depth of 12.5 would tend to have an average search time close                  
to 6.25 microseconds, with some variability. By using this estimation, we can calculate when, if               
at all, it makes sense to invest the time to build a truly optimal tree using Knuth’s algorithm. 
 

 Mehlhorn Rule 1 AVL BST 

Searches 

before 

optimal tree 

becomes ideal 

(13,557 keys) 

~1.45 billion ~274 million ~275 million ~139 million 

 
A higher score by this metric indicates a more practical algorithm. These calculations             
demonstrate that it takes a high number of searches before the cost of the optimal algorithm                
begins to pay off. Mehlhorn’s algorithm performs the best. 
 
Uneven Frequency Distribution Between Keys and Leaves 
 
To see the effects of different kinds of patterns of frequency distribution we generated a set                
where the probability of searching for something in the tree was significantly higher than that of                
searching for something that was not in the tree and vice versa. To generate the set with high                  
probability keys we simply took our dataset and put every value into the tree and set every alpha,                  
or leaf, probability to zero as every value was present. To generate a set with high leaf                 
probabilities, or high probability of searching for values not in the tree, we simply adjusted the                
way we accumulated our alpha and beta values. Instead of adding one value to the tree for every                  
two values in our dataset, we added one value to the tree for every three values in our dataset.                   
This created search gaps, or alpha values, with about twice the probability than each of the keys                 
on average. 
 
High Key (9,547 keys) 

 Knuth O(n ​2​) Mehlhorn Rule 1 AVL BST 

Build Time 260.766 0.162 0.130 0.408 0.111 

Expected 

Search Depth 

7.33 8.37 9.72 11.45 15.47 

 
 



High Leaf (5,326 keys) 

 Knuth O(n ​2​) Mehlhorn Rule 1 AVL BST 

Build Time 65.773 0.095 0.081 0.224 0.065 

Expected 

Search Depth 

8.07 8.65 10.99 11.45 14.648 

 
As expected, Knuth’s optimal algorithm presents the best expected depth and the slowest build              
time for both datasets while the unbalanced implementation presented the worst expected depth             
and fastest build times. In the dataset with high key probability, Mehlhorn’s algorithm was              
further off the optimal tree than it typically is. The reason for this is still unclear. However it still                   
had the next best expected depth, by a healthy margin. The times for the four O(n*log(n)) trees                 
were still relatively consistent among themselves, with the exception of the AVL tree which was               
noticeably slower.  
 
In the dataset with high leaf probability, Mehlhorn’s approximation was much closer to its usual               
difference from Knuth. However, Knuth’s “Rule 1” heuristic had a much larger expected depth              
than the optimized algorithms, which fit our predictions. As this heuristic only looks at key               
probabilities, it is less equipped to deal with the case where searches frequently terminate at               
leaves. We would hypothesize that if we purposefully introduced great variation in the weights              
of leaves while keeping key weights low, or simply induce even greater difference between the               
leaf and key weights, it would perform even worse.  
 
Uniform Frequency Distribution 
 
Uniform (3,000 keys) 

 Knuth O(n ​2​) Mehlhorn Rule 1 AVL BST 

Build Time 13.406 0.053 0.039 0.090 0.020 

Expected 

Search 

Depth 

9.639 9.639 9.64 9.8 12.45 

 
With a fully uniform set of probabilities, all keys with equal probability and leaves set to 0, the                  
optimal tree is a fully balanced tree. A complete tree with 2​n nodes will have a max depth of ​n –                     
1, thus our tree of size 3,000 should have a max depth of ​log ​(3000) – 1 = ~10.55. Our results in                     
the best-performing cases give an average height of roughly one less than this max height, which                



is exactly what one would expect for a fully balanced tree, given that half of the tree’s nodes                  
exist on the bottom level. 
 
Given this, all the algorithms produce relatively similar results, very close to the optimal, except               
for the unbalanced tree implementation, whose depth is still fully based on the random input               
order. As we would expect, in this case the AVL tree performs the closest it ever does to optimal,                   
as it tries to optimize the tree simply through balance. Given the numbers, Mehlhorn’s              
approximation implementation, also does unsurprisingly well, only .001 off in expected depth            
from the optimal. Knuth’s “Rule 1” heuristic, however, originally did extremely poorly. This was              
due to the fact that it simply takes max probability as root, and in our original implementation it                  
set the first max node it encountered, which resulted in a linked list implementation in this set.                 
This caused us to alter the design and have it take the median max node. This then resulting in                   
Rule 1 behaving identically in Mehlhorn in this case and giving identical expected depths.  
 
The construction times of these algorithms followed the same patterns set the previous tests, and               
what was intuitive knowing the algorithms run time and propensity for overhead. This makes an               
improved “Rule 1” heuristic the best for a fully even tree, given its slightly smaller build time,                 
but Mehlhorn’s algorithm would probably given a case where values make be close in              
probability but not completely equal. 
 

 



 
Conclusion 

 

The optimality and performance characteristics of Knuth’s dynamic programming algorithm          
were known before beginning this project. What surprised us was that all of the approximation               
algorithms perform better than anticipated, leading us to question when Knuth’s algorithm is             
actually worth its investment of time and space resources. Our calculations demonstrated that for              
a frequency distribution with only ~13,000 keys, one would need to anticipate searching the              
binary search tree ~1.45 billion times before Knuth’s algorithm began to beat Mehlhorn’s             
algorithm in terms of overall investment of time. This equates to searching the structure 46 times                
per second for an entire year. Perhaps large enterprise-grade systems would hit this target.              
However, because these are statically optimal trees, any change to the frequency distribution             
would require a new tree to be built to retain optimality. Depending on the application, this may                 
or may not be viable. 
 
Especially when considering the O(n​2​) memory usage of Knuth’s algorithm, it becomes clear that              
Mehlhorn’s algorithm is the most practical algorithm to create approximately optimal binary            
search trees. Mehlhorn’s algorithm is easy to implement, and it provides great search             
performance given its build time. For computing contexts where structures like hash tables are              
not viable, Mehlhorn’s algorithm leads to a very efficient structure for storing large sets of keys                
with known search probabilities. 
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Appendix 

 

Code from this project is available on GitHub at ​https://github.com/alexvking/comp150_bsts ​. 

https://github.com/alexvking/comp150_bsts

