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Abstract

In modern transmission networks, relay plays an important role for cooperative strategies.

Several relaying strategies, such as decode-forward, compress-forward and amplify-forward,

have been proposed for relay channels and networks. However, the capacity for the general

relay channel and network is still unknown. In this thesis, we propose several relay schemes

for different relay models.

In the first part of the thesis, we propose novel partial decode-forward (PDF) schemes

for the two-way relay channel with direct link. Different from pure decode-forward, each

user divides its message into two parts and the relay decodes only one part of each. The

relay then generates its codeword as a function of the two decoded parts and forwards to

the two users. We propose PDF schemes for both the full- and half-duplex modes. Analysis

and simulation show that if for one user, the direct link is stronger than the user-to-relay

link, while for the other, the direct link is weaker, then PDF can achieve a rate region

strictly larger than the time-shared region of pure decode-forward and direct transmission

for both full- and half-duplex modes.

The second part of the thesis is based on noisy network coding, which is recently pro-

posed for the general multi-source network by Lim, Kim, El Gamal and Chung. This

scheme builds on compress-forward (CF) relaying but involves three new ideas, namely no

Wyner-Ziv binning, relaxed simultaneous decoding and message repetition. In this part,

using the one-way and two-way relay channel as the underlining example, we analyze the

impact of each of these ideas on the achievable rate region of relay networks.

In the third part of the thesis, we propose two coding schemes combining decode-forward

(DF) and noisy network coding (NNC) with different flavors. The first is a combined DF-

NNC scheme for the one-way relay channel which includes both DF and NNC as special

cases by performing rate splitting, partial block Markov encoding and NNC. The second

combines two different DF strategies and layered NNC for the two-way relay channel.

Analysis and simulation show that both proposed schemes supersede each individual scheme

and take full advantage of both DF and NNC.
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Abrégé

Dans les réseaux de transmission modernes, les relais jouent un rôle important dans les

stratégies coopératives. Plusieurs stratégies de relai, telles que decode-forward, compress-

forward et amplify-forward, ont été proposées pour les canaux et réseaux à relais. Cepen-

dant, la capacité du canal à relai général et de tels réseaux reste toujours inconnue. Dans

cette thèse, nous proposons plusieurs stratégies de relai pour différents modèles.

Dans un premier temps, nous proposons de nouvelles stratégies de decode-forward par-

tiel (PDF) pour le canal à relai bidirectionnel avec lien direct. A la différence du decode-

forward classique, chaque utilisateur divise son message en deux parties, mais le relai ne

décode que l’une d’entre elles pour chacun. Le relai génère alors un mot de code en fonc-

tion de ces deux parties décodées et les transmet aux deux utilisateurs. Nous proposons

une stratgie PDF à la fois pour les liaisons half- et full-duplex. Comme le montrent les

analyses et simulations réalisées, si, pour l’un des utilisateurs, le lien direct est meilleur que

le lien utilisateur-relai alors que, pour l’autre utilisateur, le lien direct est plus faible, dans

ce cas, la stratégie PDF permet d’accrôıtre strictement la région des débits atteignables

par rapport à la région atteinte par le partage de temps avec la stratégie decode-forward

classique et la transmission directe, à la fois pour les liaisons half- et full-duplex.

La deuxième partie de cette thèse s’intéresse au codage de réseau avec bruit, qui a été

abordé récemment pour les réseaux multi-sources génériques par Lim, Kim, El Gamal et

Chung. Cette stratégie se base sur le relayage par compress-forward (CF), mais utilise trois

nouvelles idées, à savoir le binning de Wyner-Ziv, le décodage simultané moins contraignant

et la répétition de message. Dans cette partie, nous prenons pour exemple les canaux à

relai mono- et bidirectionnels, et nous analysons l’impact de chacune de ces idées sur la

région des débits atteignables pour les réseaux à relais.

Dans la troisième partie de cette thèse, nous proposons deux stratégies de codage qui

combinent le decode-forward (DF) et le codage de réseau avec bruit (NNC), avec différentes

nuances. La première est une stratégie combinée DF-NNC pour le canal à relai monodirec-

tionnel, pour laquelle DF et NNC représentent des cas particuliers par partage de débit,

de même que lencodage partiel en bloc de Markov et NNC. La deuxième stratégie combine

deux stratégies DF différentes au codage NNC en couches pour le canal à relai bidirection-

nel. Les analyses et les simulations montrent que les deux stratégies proposées remplacent

chaque stratégie individuelle et prennent pleinement avantage des stratégies DF et NNC.
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Chapter 1

Introduction

1.1 Background

With the increasing size of communication networks, cooperative transmission is becoming

more and more important. For example, in a wireless network, the transmitted message

from a node is heard not only by its intended receiver, but also by other neighbour nodes.

Those neighbour nodes can use the received signals to help transmission. They bring a

cooperative transmission by acting as relays.

The relay channel (RC) first introduced by van der Meulen consists of a source aiming to

communicate with a destination with the help of a relay (called single relay channel or one-

way relay channel). In [1], Cover and El Gamal propose the fundamental decode-forward

(DF), compress-forward (CF) schemes for the one-way relay channel. In DF, the relay

decodes the message from the source and forwards it to the destination. In CF, the relay

compresses received signal and forwards the compression index. Although a combination

of these schemes achieve capacity of several types of channels, none of them are optimal in

general. We will discuss more details in the literature review section.

The one-way relay channel can be extended to the two-way relay channel (TWRC) in

which a relay helps two users exchange messages. Two types of TWRC exist: one without

a direct link between the two users, a model suitable for wired communication, and one

with the direct link, more suitable for wireless communication. In this thesis, we focus on

the TWRC with direct link between the two users, also called the full TWRC. TWRC is

a practical channel model for wireless communication systems. For example, a dedicated

relay station has been proposed in 4G wireless standards to help the mobile and base station
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exchange messages. The decode-forward and compress-forward schemes can be generalized

to the two-way relay channel, such as in [2] and [3].

More generally, relay channels can be extended to relay networks, in which each node

wishes to send a message to some destinations while also acting as a relay for others. In [4],

decode-forward and compress-forward are studied in relay networks. In [5], Lim, Kim, El

Gamal and Chung propose a noisy network coding scheme based on compress-forward for

the general relay network. More details on those works will be discussed in literature review

section.

Although relay channels and networks have drawn growing attention, the capacity region

of relay network is still unknown. What is the optimal coding scheme that achieves the

capacity region? In this thesis, we propose and analyze several coding schemes for the relay

channels. These schemes are steps towards understanding the optimal coding.

1.2 Literature Review

A number of coding schemes have been proposed for relay channels and networks. Some

basic relaying strategies include amplify-forward, decode-forward and compress-forward. In

this section, we will first review works on decode-forward and compress-forward. Most of

our works in this thesis are based on these two schemes. After that, we will briefly review

a new relaying strategy called compute-forward.

Before our literature review, we introduce two transmission modes: full-duplex trans-

mission and half-duplex transmission. In full-duplex transmission, each node can transmit

and receive at the same time; whereas for half-duplex transmission, each node can only

either transmit or receive at each time. In this section, unless otherwise specified, the

transmission mode is full-duplex.

1.2.1 Decode-Forward

In this part, we review related works on decode-forward for relay channels and relay net-

works. We divide the discussion into two parts. The first part is on single-source, single

destination relay networks. The second part is on multi-source, multi-destination relay

networks such as the two-way relay channel.
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Single-source single destination relay networks

• In [1], Cover and El Gamal propose a decode-forward scheme for the one-way relay

channel. The source uses block Markov superposition encoding. The relay decodes

the message and sends its random binning index. The destination performs successive

decoding. The following rate is achievable with DF:

R ≤ min{I(X,Xr;Y ), I(X;Yr|Xr)} (1.1)

for some p(x, xr). They also propose a partial decode-forward scheme in which the

message is split into two parts, and the relay only decodes one part of them. It

achieves the same rate either as decode or as direct transmission (without using the

relay) for the Gaussian channel.

• In [6], Willems and van der Meulen introduces a backward decoding in which decoding

at the receiver is done backwards after all blocks are received. It achieves the same

rates as that in [1] for the discrete memoryless channel.

Multi-source multi-destination relay networks

• In [2], Rankov and Wittneben apply decode-forward to the two-way relay channel.

In their proposed DF scheme, the two users perform partial block Markov encoding,

and the relay sends a superposition of the codewords for the two decoded messages

in each block.

• A different DF strategy is proposed in [3] by Xie, in which the users encode indepen-

dently with the relay without block Markovity, and the relay sends a codeword for

the random binning of the two decoded messages. These two DF schemes [2] [3] do

not include each other in general.

• In [4], Kramer, Gastpar and Gupta extend decode-forward to several classes of relay

networks, including single-source, single-destination, multi-relay network, multiple

access relay channel (MARC) and broadcast relay channel (BRC). Sliding-window

decoding is performed at the destinations.

• Decode-forward has also been applied to the half-duplex two-way relay channel. In [7],

three full decode-forward protocols are proposed which has 2, 3 or 4 phases, in which
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the 4-phase protocol contains the 2- and 3-phase ones as special cases and achieves

the largest rate region. In [8], these authors extend the protocols to a mixed relaying

strategy which combines CF in one direction and DF in the other.

1.2.2 Compress-Forward

In this part, we review related works on compress-forward (CF) strategies for relay channels

and networks. We divide the discussion into three parts. The first part is on single-source,

single-destination relay networks. The second part is on some variants of the CF scheme.

The third part is on multi-source multi-destination relay networks.

Single-source single-destination relay networks

In the following works, the source and relay encoding are similar. At each block, the source

sends a different message; the relay first compresses its received signal then uses Wyner-Ziv

binning to reduce the forwarding rate. The differences are mainly in the decoding at the

destination by either performing successive or joint decoding.

• Compress-forward is originally proposed for the 3-node single-relay channel (also

called the one-way relay channel) by Cover and El Gamal in [1]. The source sends a

new message at each block using independent codebooks. The relay compresses its

noisy observation of the source signal and forwards the bin index of the compression

to the destination using Wyner-Ziv coding [9]. A 3-step sequential decoding is then

performed at the destination. At the end of each block, the destination first decodes

the bin index, and then decodes the compression index within that bin, and at last

uses this compression index to decode the message sent in the previous block. The

following rate is achievable with the 3-step sequential decoding CF scheme:

R ≤ I(X;Y, Ŷr|Xr) (1.2)

subject to

I(Xr;Y ) ≥ I(Ŷr;Yr|Xr, Y ).

for some p(x)p(xr)p(ŷr|yr, xr)p(y, yr|x, xr).
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• El Gamal, Mohseni, and Zahedi put forward a 2-step decoding CF scheme in [10].

The source and relay perform the same encoding as that in [1]. The destination,

however, decodes in 2 sequential steps. At the end of each block, it decodes the bin

index first, and then decodes the message for some compression indices within that

bin instead of decoding the compression index precisely. With this 2-step decoding

CF scheme, the following rate is achievable:

R ≤ min{I(X,Xr;Y )− I(Ŷr;Yr|X,Xr, Y ), I(X;Y, Ŷr|Xr)} (1.3)

for some p(x)p(xr)p(ŷr|yr, xr)p(y, yr|x, xr). It has been shown [10] [11] that this 2-step

decoding CF achieves the same rate as the original 3-step decoding CF in (1.2) but

has a simpler representation.

• Kramer, Gastpar, and Gupta extend the 3-step decoding CF scheme to the single-

source, single-destination and multiple-relay network in [4]. The relays can also coop-

erate with each other to transmit the compression bin indices by partially decoding

these bin indices.

• Chong, Motani and Garg propose two coding schemes for the one-way relay chan-

nel combining decode-forward and compress-forward in [12]. Similar to the original

combined scheme in [1], the source splits its message into two parts and the relay

decode-forwards one part and compress-forwards the other. The destination, how-

ever, performs backward decoding either successively or simultaneously. These two

strategies achieve higher rates than the original combined strategy in [1] for certain

parameters of the Gaussian relay channel.

Variants of compress-forward

Several variants of the CF scheme have been proposed for the relay channel.

• Cover and Kim propose a hash-forward (HF) scheme for the deterministic relay chan-

nel in [13], in which the relay hashes (randomly bins) its observation directly without

compression and forwards the bin index to the destination. HF achieves the capaci-

ty of the deterministic relay channel. Kim then proposes an extended hash-forward

(EHF) scheme in [14] which allows the destination to perform list decoding of the

source messages for the general non-deterministic case.



6 Introduction

• Razaghi and Yu introduce in [15] a generalized hash-forward (GHF) relay strategy

which allows the relay to choose a description of a general form rather than direct

hashing (binning) of its received signal, but with a description rate on the opposite

regime of Wyner-Ziv binning. The destination then performs list decoding of the

description indices. GHF achieves the same rate as the original CF for the one-

way relay channel but have been shown to exhibit advantage for multi-destination

networks by allowing different description rates to different destinations [16].

• Recently a new notion of quantize-forward or CF without binning emerges [5] [17]

in which the relay compresses its received signal but forwards the compression index

directly without using Wyner-Ziv binning. We discuss this idea in more details in

the next few paragraphs.

Multi-source multi-destination relay networks

Relatively fewer works have applied CF to the general multi-source multi-destination relay

network.

• Rankov and Wittneben applied the 3-step decoding CF scheme to the two-way relay

channel (TWRC) in [2], in which two users wish to exchange messages with the help

of a relay. The encoding and decoding are similar to those in [1].

• Recently, Lim, Kim, El Gamal and Chung put forward a noisy network coding scheme

[5] for the general multi-source noisy network. This scheme involves three key new

ideas. The first is message repetition, in which the same message is sent multiple

times over consecutive blocks using independent codebooks. Second, each relay does

not use Wyner-Ziv binning but only compresses its received signal and forwards the

compression index directly. Third, each destination performs simultaneous decoding

of the message based on signals received from all blocks without uniquely decoding

the compression indices. Noisy network coding simplifies to the capacity-achieving

network coding for the noiseless multicast network. Compared to the original CF, it

achieves the same rate for the one-way relay channel and achieves a larger rate region

when applied to multi-source networks such as the two-way relay channel. However,

it also brings more delay in decoding because of message repetition.
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• In [18], Lim, Kim, El Gamal and Chung propose an improved NNC scheme termed

”layered noisy network coding” (LNNC). The relay compresses its observation into

two layers: one is used at both destinations, while the other is only used at one

destination.

• In [19], Ramalingam and Wang propose a superposition NNC scheme for restricted

relay networks, in which source nodes cannot act as relays, by combining decode-

forward and noisy network coding and show some performance improvement over

NNC. Their scheme, however, does not include DF relaying rate because of no block

Markov encoding.

Analysis of compress-forward schemes

With the above variants and developments on CF relaying, some works have analyzed the

different ideas in compress-forward.

• Kim, Skoglund and Caire [20] show that without Wyner-Ziv binning at the relay,

using sequential decoding at the destination incurs rate loss in the one-way relay

channel. The amount of rate loss is quantified specifically in terms of the diversity-

multiplexing tradeoff for the fading channel.

• Wu and Xie demonstrate in [21] that for single-source, single-destination and multiple-

relay networks, using the original CF encoding with Wyner-Ziv binning of [1], there

is no improvement on the achievable rate by joint decoding of the message and com-

pression indices. To maximize the CF achievable rate, the compression rate should

always be chosen to support successive decoding.

• Wu and Xie then propose in [22] for the single-source, single-destination and multiple-

relay network a scheme that achieves the same rate as noisy network coding [5] but

with the simpler classical encoding of [1] and backward decoding. The backward

decoding involves first decoding the compression indices then successively decoding

the messages backward. It requires, however, extending the relay forwarding times

for a number of blocks without sending new messages, which causes an albeit small

but non-vanishing rate loss.
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• Kramer and Hou discuss in [17] a short-message quantize-forward scheme without

message repetition or Wyner-Ziv binning but with joint decoding of the message and

compression index at the destination. It also achieves the same rate as the original

CF and noisy network coding for the one-way relay channel.

• Recently, Hou and Kramer in [23] propose a short message noisy network coding for

multiple sources relay network. It transmits independent short messages in blocks

rather than using long message repetitive encoding and uses backward decoding. It

is shown to achieve the same rates as noisy network coding.

1.2.3 Compute-Forward

A new relaying strategy called compute-forward was recently proposed in [24], in which

the relay decodes linear functions of transmitted messages. Nested lattice code [25] is

used to implement compute-forward in Gaussian channels, since it ensures the sum of two

codewords is still a codeword. Compute-forward has been shown to outperforms DF in

moderate SNR regimes but is worse at low or high SNR [24]. Compute-forward can be

naturally applied in two-way relay channels as the relay now receives signal containing

more than one message. In [26], nested lattice codes were proposed for the Gaussian

separated TWRC with symmetric channel, i.e. all source and relay nodes have the same

transmit powers and noise variances. For the more general separated AWGN TWRC case,

compute-forward coding with nested lattice code can achievable rate region within 1/2

bit of the cut-set outer bound [27] [28]. For the full AWGN TWRC, a scheme based on

compute-forward, list decoding and random binning technique is proposed in [29]. This

scheme achieves rate region within 1/2 bit of the cut-set bound in some cases.

In [30], we propose a combined decode-forward and compute-forward scheme for the

two-way relay channel. The combined scheme uses superposition coding of both Gaussian

and lattice codes to allow the relay to decode the Gaussian parts and compute the lattice

parts. This scheme can also achieve new rates and outperform both decode-forward and

compute-forward separately.

1.3 Outline and Contributions

This section outlines the thesis and summarizes main contributions.
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Chapter 2

This chapter introduces channel models that will be used in the thesis, including the one-

way relay channel, two-way relay channel and general relay network. For each of them,

both discrete memoryless and Gaussian models will be discussed.

Chapter 3

In [3], a decode-forward scheme is proposed for the full-duplex two-way relay channel. In [7],

a 4-phase decode-forward scheme is proposed for the half-duplex two-way relay channel.

However, similar to the case in the one-way relay channel, both of them cannot include

the direct transmission rate region. This motivates us to propose a partial decode-forward

scheme for the two-way relay channel. This chapter is organized as follows.

In the first part of this chapter, we propose a partial decode-forward scheme for full-

duplex TWRC. Each user divides its message into two parts and the relay decodes only one

part. Numerical results have shown that partial decode-forward outperforms pure decode-

forward and direct transmission in general. Moreover, we provide the analytical conditions

for when partial decode-forward achieves new rates outside the time-shared region of pure

decode-forward and direct transmission. As the second part of this thesis, we propose a

partial decode-forward scheme for the 4-phase transmission protocol, in which each user

divides its message into two parts and the relay only decodes one part of each message.

The relay then generates its codeword as a function of the decoded parts and forwards to

users. This scheme outperforms both the pure DF scheme in [7] and direct transmission.

Contents in this chapter have been published as [30] [31]:

• P. Zhong and M. Vu, “Decode-forward and compute-forward coding schemes for the

two-way relay channel,” in IEEE Info. Theory Workshop (ITW), Oct. 2011.

• P. Zhong and M. Vu, “Partial decode-forward coding schemes for the Gaussian two-

way relay channel,” in IEEE Int’l Conf. on Comm. (ICC), Oct. 2012.

Chapter 4

Noisy network coding is proposed in [5]. It is based on compress-forward and includes three

new ideas, namely no Wyner-Ziv binning, relaxed simultaneous decoding and message rep-

etition. Although achieving larger rate region than compress-forward, it brings an infinite
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delay because of message repetition. This motivates us to propose a compress-forward

scheme without Wyner-Ziv binning and analyze the impact of each ideas in relay networks.

This chapter is organized as follows.

We first derive the achievable rate using CF without binning (also called quantize-

forward) but with joint decoding of both the message and compression index for the one-

way relay channel. It achieves the same rate as the original CF in [1] [10]. Compared with

the original CF, it simplifies relay operation since Wyner-Ziv binning is not needed, but

increases decoding complexity at the destination since joint decoding instead of successive

decoding is required. Compared with noisy network coding, it achieves the same rate while

having much less encoding and decoding delay.

In the second part, we extend CF without binning to the two-way relay channel and

derive its achievable rate region. The scheme achieves a larger rate region than the original

CF [2]. With binning and successive decoding, the compression rate is constrained by

the weaker of the links from relay to two users. But without binning, this constraint is

relaxed. However, CF without binning generally achieves smaller rate region than noisy

network coding [5]. In CF without binning, the decoding of the compression index imposes

constraints on the compression rate. In noisy network coding, the destinations do not

decode the compression index explicitly, thus removing these constraints.

In the third part, using the two-way relay channel as the underlining example, we

analyze the effect of each of the three new ideas in noisy network coding for the general

multi-source multi-destination relay networks.

Contents in this chapter have been published/submitted as [32] [33]:

• P. Zhong and M. Vu, “Compress-forward without Wyner-Ziv binning for the one-way

and two-way relay channels,” in 49th Annual Allerton Conf. on Comm., Control, and

Computing, Sept. 2011.

• P. Zhong, A. A. A. Haija, and M. Vu, “On compress-forward without Wyner-Ziv

binning for relay networks,” submitted to IEEE Trans. on Info. Theory. Arxiv

preprint arXiv:1111.2837, 2011.

Chapter 5

In this chapter, we first propose a combined DF-NNC scheme for the one-way channel.

Different from [19], our proposed scheme performs block Markov encoding and hence en-
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compasses both DF relaying and NNC as special cases. It outperforms the combined

decode-forward and compress-forward scheme in [1] under certain channel parameters, and

achieves the same rate as the backward decoding strategies in [12] for the Gaussian relay

channel. We then propose a combined DF-LNNC scheme for the TWRC. This scheme also

includes partial block Markov encoding and, in addition, performs layered NNC. Analysis

and numerical results show that this scheme outperforms each individual scheme in [2,3,18]

and also the combined scheme in [19].

Contents in this chapter have been published as [34] 1:

• P. Zhong and M. Vu, “Combined decode-forward and layered noisy network coding

schemes for relay channels,” submitted to IEEE Int’l Symp. on Info. Theory (ISIT),

July 2012.

Chapter 6

This chapter concludes this thesis and discusses potential future work.

1This thesis also contains a correction to the result published in Theorem 1 of [34], as described in detail
in Chapter 5 Section 5.2.



12



13

Chapter 2

Channel Models

In this chapter, we introduce various channel models which will be discussed in our thesis.

Those channel models includes the one-way relay channel, two-way relay channel and relay

networks. For each channel, we introduce its discrete memoryless model and Gaussian

model respectively. We also introduce notations used in this thesis which are similar to

those in [11].

2.1 One-Way Relay Channel Model

2.1.1 Discrete Memoryless One-Way Relay Channel Model

The discrete memoryless one-way relay channel (DM-RC) is denoted by (X×Xr, p(y, yr|x, xr),
Y×Yr), as in Figure 2.1. Sender X wishes to send a message M to receiver Y with the help

of the relay (Xr, Yr). We consider a full-duplex channel in which all nodes can transmit

and receive at the same time.

Fig. 2.1 Discrete memoryless one-way relay channel model.

A (2nR, n, Pe) code for a DM-RC consists of: a message set M = [1 : 2nR]; an encoder
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Fig. 2.2 Gaussian one-way relay channel model.

that assigns a codeword xn(m) to each message m ∈ [1 : 2nR]; a relay encoder that assigns

at time i ∈ [1 : n] a symbol xri(y
i−1
r ) to each past received sequence yi−1r ∈ Y i−1r ; a decoder

that assigns a message m̂ or an error message to each received sequence yn ∈ Yn. The

average error probability is Pe = Pr{M̂ 6= M}. The rate R is said to be achievable for the

DM-RC if there exists a sequence of (2nR, n, Pe) codes with Pe → 0. The supremum of all

achievable rates is the capacity of the DM-RC.

2.1.2 Gaussian One-Way Relay Channel Model

As in Figure 2.2, the Gaussian one-way relay channel can be modeled as

Y = gX + g2Xr + Z, Yr = g1X + Zr, (2.1)

where Z,Zr ∼ N (0, 1) are independent Gaussian noises, and g, g1, g2 are the corresponding

channel gains.

2.2 Two-Way Relay Channel Model

2.2.1 Discrete Memoryless Two-Way Relay Channel Model

The discrete memoryless two-way relay channel (DM-TWRC) is denoted by (X1 × X2 ×
Xr, p(y1, y2, yr|x1, x2, xr),Y1×Y2×Yr), as in Figure 2.3. Here x1 and y1 are the input and

output signals of user 1; x2 and y2 are the input and output signals of user 2; xr and yr are

the input and output signals of the relay.

A (2nR1 , 2nR2 , n, Pe) code for a DM-TWRC consists of two message setsM1 = [1 : 2nR1 ]

and M2 = [1 : 2nR2 ], three encoding functions f1,i, f2,i, fr,i, i = 1, . . . , n and two decoding
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Fig. 2.3 Discrete memoryless two-way relay channel model.

function g1, g2 as follows:

x1,i = f1,i(M1, Y1,1, . . . , Y1,i−1), i = 1, . . . , n

x2,i = f2,i(M2, Y2,1, . . . , Y2,i−1), i = 1, . . . , n

xr,i = fr,i(Yr,1, . . . , Yr,i−1), i = 1, . . . , n

g1 : Yn1 ×M1 →M2

g2 : Yn2 ×M2 →M1

The average error probability is Pe = Pr{g1(M1, Y
n
1 ) 6= M2 or g2(M2, Y

n
2 ) 6= M1}. A rate

pair is said to be achievable if there exists a (2nR1 , 2nR2 , n, Pe) code such that Pe → 0 as

n→∞. The closure of the set of all achievable rates (R1, R2) is the capacity region of the

two-way relay channel.

2.2.2 Full-Duplex Gaussian Two-Way Relay Channel Model

For the Gaussian two-way relay channel, we consider two transmission modes: full-duplex

mode and half-duplex mode. In full-duplex transmission, each node can transmit and

receive at the same time; whereas for half-duplex transmission, each node can only either

transmit or receive at each time. We first discuss the full-duplex model, and then discuss

the half-duplex model in next section.

As in Figure 2.4, the full-duplex Gaussian two-way relay channel can be modeled as:

Y1 = g12X2 + g1rXr + Z1

Y2 = g21X1 + g2rXr + Z2

Yr = gr1X1 + gr2X2 + Zr (2.2)



16 Channel Models

Fig. 2.4 Full-duplex Gaussian two-way relay channel model.

where Z1, Z2, Zr ∼ N (0, 1) are independent Gaussian noises. The average input power con-

straints for user 1, user 2 and the relay are all P . g12, g1r, g21, g2r, gr1, gr2 are corresponding

channel gains.

2.2.3 Half-Duplex Gaussian Two-Way Relay Channel Model

For the half-duplex mode, each node can only either send or receive at each time. We

consider a 4-phase half-duplex Gaussian two-way relay model as in Figure 2.5, as motivated

by [7] which shows the best performance out of several protocols.

1 2

R

1 2

R

1 2

R

1 2

R
)( 1 Phase 1 )( 2 Phase 2 )( 3 Phase 3 )( 4 Phase 4

Fig. 2.5 Half-duplex Gaussian two-way relay channel model.

During the 1st phase, user 1 transmits. During the 2nd phase, user 2 transmits. During

the 3rd phase, both user 1 and user 2 transmit. During the 4th phase, the relay transmits.

Assume all nodes listen while not transmitting. The transmitted signals during each phase

can be expressed as

Phase 1: Y21 = g21X11 + Z21, Yr1 = gr1X11 + Zr1

Phase 2: Y12 = g12X22 + Z12, Yr2 = gr2X22 + Zr2
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Phase 3: Yr3 = gr1X13 + gr2X23 + Zr2

Phase 4: Y14 = g1rXr + Z14, Y24 = g2rXr + Z24,

where Xij represents the transmitted signal of user i during phase j. Yij represents re-

ceived signal of user i during phase j. All the noises Z are independently and identically

distributed according to N (0, 1).

2.3 Relay Networks Model

Fig. 2.6 Relay network model.

A N -node discrete memoryless relay network (
∏N

k=1Xk, p(yN |xN),×Nk=1Yk) is depicted

in Figure 2.6. It consists of N sender-receiver alphabet pairs (Xk,Yk), k ∈ [1 : N ] and a

collection of conditional pmfs p(y1, · · · yN |x1, · · ·xN). Each node k ∈ [1 : N ] wishes to send

a message Mk to a set of destination nodes, while also acting as a relay for messages from

other nodes.
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Chapter 3

Partial Decode-Forward Coding

Schemes

3.1 Problem Statement

For the one-way relay channel, Cover and El Gamal propose a decode-forward scheme in [1].

The relay fully decodes the message from the source and forwards it to the destination.

However, when the direct link is stronger than the user-to-relay link, decode-forward is not

the optimal scheme compared to direct transmission without using the relay. To combine

both cases, they also design a partial decode-forward scheme where the relay decides to

decode part of the message according to the channel condition.

For the two-way relay channel, there are also two existing coding schemes: direct trans-

mission and full decode-forward scheme. For direct transmission, the relay is not used. For

full decode-forward, the relay decodes the whole message of each user then forwards a func-

tion of these messages as in [2] [3]. As we will see, similarly to the one-way relay channel,

direct transmission achieves strictly larger rate region than decode-forward if for both users,

the direct link is stronger than the user-to-relay link. If for both users, the user-to-relay

link is sufficiently stronger than the direct link, then decode-forward outperforms direct

transmission. However, in cases such that for one user, the user-to-relay link is stronger

than the direct link, while for the other user, it’s the opposite, then neither existing scheme

outperforms the other. This motivates us to put forward the partial decode-forward scheme

where the relay only decodes a part of the messages and forwards them. We propose partial
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decode-forward for both full- and half-duplex two-way relay channels.

3.2 Partial DF for Full-Duplex TWRC

3.2.1 Coding Scheme and Achievable Rate Region for the DM TWRC

In this section, we provide an achievable rate region for the full-duplex TWRC with a partial

decode-forward scheme. Each user splits its message into two parts and uses superposition

coding to encode them. The relay only decodes one message part of each user and re-encode

the decoded message pair together and broadcast. It can either re-encode each message

pair separately or divides these message pairs into lists and only encodes the list index,

which is similar to the binning technique in [3]. Both strategies achieve the same rate

region. The users then decode the message from each other by joint typicality decoding of

both the current and previous blocks.

Theorem 1. The following rate region is achievable for the two-way relay channel with

partial decode-forward:

R1 ≤ min{I(U1;Yr|U2, Xr) + I(X1;Y2|U1, X2, Xr), I(X1, Xr;Y2|X2)}

R2 ≤ min{I(U2;Yr|U1, Xr) + I(X2;Y1|U2, X1, Xr), I(X2, Xr;Y1|X1)}

R1 +R2 ≤ I(U1, U2;Yr|Xr) + I(X1;Y2|U1, X2, Xr) + I(X2;Y1|U2, X1, Xr) (3.1)

for some joint distribution p(u1, x1)p(u2, x2)p(xr).

Proof. We use a block coding scheme in which each user sends b−1 messages over b blocks

of n symbols each.

1) Codebook generation: Fix p(u1, x1)p(u2, x2)p(xr). Split each message into two parts:

m1 = (m10,m11) with rate (R10, R11), and m2 = (m20,m22) with rate (R20, R22).

• Generate 2nR10 i.i.d. sequences un1 (m10) ∼
∏n

i=1 p(u1i), where m10 ∈ [1 : 2nR10 ]. For

each un1 (m10), generate 2nR11 i.i.d. sequences xn1 (m11,m10) ∼
∏n

i=1 p(x1i|u1i), where

m11 ∈ [1 : 2nR11 ].

• Generate 2nR20 i.i.d. sequences un2 (m20) ∼
∏n

i=1 p(u2i), where m20 ∈ [1 : 2nR20 ]. For

each un2 (m20), generate 2nR22 i.i.d. sequences xn2 (m22,m20) ∼
∏n

i=1 p(x2i|u2i), where

m22 ∈ [1 : 2nR22 ].
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• Uniformly throw each message pair (m10,m20) into 2nRr bins. Let K(m10,m20) denote

the index of bin.

• Generate 2nRr i.i.d. sequences xnr (K) ∼
∏n

i=1 p(xri), where K ∈ [1 : 2nRr ]. If Rr =

R10 +R20, there is no need for binning.

The codebook is revealed to all parties.

2) Encoding: In each block j ∈ [1 : b−1], user 1 and user 2 transmit xn1 (m11,j,m10,j) and

xn2 (m22,j,m20,j) respectively. In block b, user 1 and user 2 transmit xn1 (1, 1) and xn2 (1, 1),

respectively.

At the end of block j, the relay has an estimate (m̃10,j, m̃20,j) from the decoding proce-

dure. It transmits xnr (K(m̃10,j, m̃20,j)) in block j + 1.

3) Decoding: We explain the decoding strategy at the end of block j.

Decoding at the relay: Upon receiving ynr (j), the relay searches for the unique pair

(m̃10,j, m̃20,j) such that

(
un1 (m̃10,j), u

n
2 (m̃20,j), y

n
r (j), xnr (K(m̃10,j−1, m̃20,j−1))

)
∈ T nε .

Following the analysis in multiple access channel, the error probability will go to zero as

n→∞ if

R10 ≤ I(U1;Yr|U2, Xr)

R20 ≤ I(U2;Yr|U1, Xr)

R10 +R20 ≤ I(U1, U2;Yr|Xr). (3.2)

Decoding at each user: By block j, user 2 has decoded m1,j−2. At the end of block j, it

searches for a unique message pair (m̂10,j−1, m̂11,j−1) such that

(
xnr (K(m̂10,j−1,m20,j−1)), y

n
2 (j), xn2,j

)
∈ T nε

and
(
un1 (m̂10,j−1), x

n
1 (m̂11,j−1, m̂10,j−1), y

n
2 (j − 1), xnr (K(m1,j−2,m2,j−2)), x

n
2,j−1

)
∈ T nε .
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Following joint decoding analysis, the error probability will go to zero as n→∞ if

R11 ≤ I(X1;Y2|U1, X2, Xr)

R10 +R11 ≤ I(Xr;Y2|X2) + I(U1, X1;Y2|X2, Xr) = I(X1, Xr;Y2|X2). (3.3)

Similarly, user 1 can decode (m20,j−1,m22,j−1) with error probability goes to zero as

n→∞ if

R22 ≤ I(X2;Y1|U2, X1, Xr)

R20 +R22 ≤ I(X2, Xr;Y1|X1). (3.4)

By applying Fourier-Motzkin Elimination to the inequalities in (3.2)-(3.4), the achiev-

able rates in terms of R1 = R10 + R11 and R2 = R20 + R22 are as given in Theorem

1.

Remark 1. If U1 = X1, U2 = X2, this region reduces to the decode-forward lower bound

in [3]. Therefore, the partial DF scheme contains the DF scheme in [3] as a special case.

3.2.2 Achievable Rate Region Analysis for the Guassian TWRC

Now we apply the proposed partial decode-forward scheme to the full-duplex Gaussian

TWRC in (2.2). Using jointly Gaussian codewords, we can derive an achievable rate region

as follows.

Theorem 2. The following rate region is achievable for the Gaussian two-way relay chan-

nel.

R1 ≤ min

{
C

(
g2r1αP

g2r1ᾱP + g2r2β̄P + 1

)
+ C(g221ᾱP ), C(g221P + g22rP )

}
R2 ≤ min

{
C

(
g2r2βP

g2r1ᾱP + g2r2β̄P + 1

)
+ C(g212β̄P ), C(g212P + g21rP )

}
R1 +R2 ≤ C

(
g2r1αP + g2r2βP

g2r1ᾱP + g2r2β̄P + 1

)
+ C(g221ᾱP ) + C(g212β̄P ), (3.5)

where 0 ≤ α, β ≤ 1 and C(x) =
1

2
log(1 + x).
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Achievability follows from Theorem 1 by setting X1 = U1 + V1, where U1 ∼ N (0, αP1)

and V1 ∼ N (0, ᾱP1) are independent, and by setting X2 = U2 + V2, where U2 ∼ N (0, βP2)

and V2 ∼ N (0, β̄P2) are independent.

Now we analyze and compare above rate region achieved by the proposed partial decode-

forward scheme with that achieved by pure decode-forward scheme [3] and direct trans-

mission (without using the relay) for different channel conditions. We first present the

achievable rate region of pure decode-forward scheme and direct transmission.

Theorem 3. [3] The following rate region is achievable for the full-duplex Gaussian

two-way relay channel with pure decode-forward scheme:

R1 ≤ min
{
C(g2r1P ), C(g221P + g22rP )

}
R2 ≤ min

{
C(g2r2P ), C(g212P + g21rP )

}
R1 +R2 ≤ C(g2r1P + g2r2P ). (3.6)

If the two users only use direct links to exchange message instead of using the relay, the

following rate region is achievable:

R1 ≤ C(g221P )

R2 ≤ C(g212P ). (3.7)

Remark 2. If α = 1, β = 1, the rate region in (3.5) reduces to the decode-forward lower

bound in (3.6). If α = 0, β = 0, the rate region in (3.5) reduces to the direct transmission

lower bound in (3.7). Thus partial decode-forward region always include both decode-

forward and direct transmission regions as special cases.

The following theorem compares the rate region of partial decode-forwards with that of

pure decode-forwards and direct transmission for different channel cases.

Theorem 4. Comparing PDF with pure decode-forward and direct transmission (without

using the relay), we have the following 4 cases:

1) PDF can achieve rates strictly outside the time-shared region of DF and direct transmis-
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sion if

g2r1 >g
2
21 + min{g221g2r2P, g22r}, g212 > g2r2

or g2r2 >g
2
12 + min{g212g2r1P, g21r}, g221 > g2r1 (3.8)

2) PDF achieves the time-shared region of DF and direct transmission if

g221 < g2r1, g212 < g2r2

C(g221P ) + C(g212P ) > C(g2r1P + g2r2P ) (3.9)

3) PDF achieves the same rate region as pure DF scheme which is strictly larger than direct

transmission if

g221 ≤ g2r1, g212 ≤ g2r2

C(g221P ) + C(g212P ) ≤ C(g2r1P + g2r2P ) (3.10)

4) PDF achieves the same rate region as direct transmission which is strictly larger than

DF if

g221 ≥ g2r1, g212 ≥ g2r2. (3.11)

Proof. See Appendix A.1.

3.2.3 Discussion and Numerical Examples

Discussion

Some intuition for our proposed partial decode-forward (PDF) scheme can be developed as

follows:

• Compared to DF, PDF involves extra superposition encoding which can be easily

implemented in practice. It uses joint decoding similar to DF and hence has similar

decoding complexity.

• When the user-to-relay link is weaker than the direct link, decoding the whole message

at the relay limits the achievable rate. In such a case, partially decoding messages at
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Fig. 3.1 Partial decode-forward achieves rates outside the time-shared re-
gion of decode-forward and direct transmission in the full-duplex TWRC.

the relay can relax the constraint and achieve a larger rate region.

• Theorem 4 implies that when both direct links are sufficiently weaker than the user-

to-relay links, the relay should fully decode the messages and forward them. When

both direct links are stronger than the user-to-relay links, the relay should not be

used. If for one user, the direct link is stronger than the user-to-relay link, while for

the other one, the direct link is weaker, then the relay should decode only a part of

the message from the former.

• Applicability in wireless channels: In the wireless environment, the channel gains

fluctuate and can easily cover all cases of Theorem 4. Thus it is useful to know

the optimal scheme for each case such that each user can adapt their transmission

according to the channel strength.

Numerical examples

For cases 1 and 2 in Theorem 4, we provide each an example. Figure 3.1 shows an example

in which partial decode-forward achieves rates outside the time-shared region of decode-

forward and direct transmission. Figure 3.2 shows an example where partial decode-forward

achieves the time-shared region of decode-forward and direct transmission. In both cases,

the proposed PDF scheme outperforms pure DF.
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Fig. 3.2 Partial decode-forward achieves time-shared region of decode-
forward and direct transmission in the full-duplex TWRC.

3.3 Partial DF for Half-Duplex TWRC

In this section, we design a partial decode-forward scheme for the half-duplex case. The

half-duplex mode in which each node can either transmit or receive at each time, is more

practical in wireless systems. Moreover, transmissions are performed in independent blocks

without block Markovity. Each user can decode the message of the other user at the end

of each block without any delay.

Three decode-forward protocols for the half-duplex two-way relay channel have been

proposed in [7]. The first protocol divides each block into 2 phases, in which both users

transmit in the first phase and the relay transmits in the second phase. The second protocol

divides each block into 3 phases, in which user 1 transmits in the first phase, user 2 in the

second phase and the relay in the third phase. The third protocol divides each block into

4 phases, in which user 1 transmits in the first phase, user 2 in the second phase, both

users transmit in the third phase and the relay transmits in the last phase. All nodes listen

while not transmitting. It has been shown that the 4-phase achieves the largest rate region

among these three protocols.

We will only discuss a 4-phase partial decode-forward scheme as it outperforms the

other two. The main difference between our scheme and the scheme in [7] is that the relay

only decodes a part of the messages in our scheme, whereas it decodes the full messages
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Fig. 3.3 Half-duplex partial decode-forward transmission diagram.

in [7]. When a direct link is stronger than the user-to-relay link, the proposed scheme

achieves strictly larger rate region.

3.3.1 Coding Scheme and Achievable Rate Region

Consider the transmission at each block, which is divided into four phases as in Figure

3.3. Each message is divided into two parts for each user. During the 1st phase, user 1

transmits both parts. During the 2nd phase, user 2 transmits both parts. During the 3rd

phase, both users transmit only one part of their messages. At the end of the 3rd phase,

the relay decodes this part of each message based on the received signals from all first three

phases. It then transmits a function of those message parts during the 4th phase. At the

end of the 4th phase, user 1 decodes the message of user 2 based on received signals in the

2nd and 4th phases. Similarly for user 2.

User encoding

Let the relative time duration of the phases are τ1, τ2, τ3 and τ4 respectively, where τ1 +

τ2 + τ3 + τ4 = 1. Let m1 be the message of user 1 to be sent during a specific block. User 1

divides it into two parts (m10,m11) with rate (R10, R11) and encodes m10 and m11 by U1 and

V1 respectively. Then the transmitted signals of user 1 during phase 1 and 3 respectively

are as follows.

X11 =
√
α11U1(m10) +

√
β11V1(m11)

X13 =
√
α13U1(m10)

where α11, β11, α13 are corresponding power allocations. Similarly, user 2 divides its message

m2 into two parts (m20,m22) with rate (R20, R22) and encodes m20 and m22 by U2 and V2
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respectively. Its transmitted signals in the 2nd and 3rd phases respectively are

X22 =
√
α22U2(m20) +

√
β22V2(m22)

X23 =
√
α23U2(m20).

Relay operation

Decoding: At the end of the 3rd phase, the relay decodes the messages parts (m10,m20)

based on received signals from the 1st, 2nd and 3rd phases by joint decoding.

Encoding: The relay then constructs its transmitted signal in the 4th phase as

Xr =
√
γW (m10,m20)

where W (m10,m20) can be generated as a function (for example, XOR or random binning)

of the codewords for (m10,m20).

In the above signals, U1, V1, U2, V2,W are independent and identically distributed ac-

cording to N (0, 1). The power constraints for the two users and the relay are as follows.

τ1(α11 + β11) + τ3α13 = P

τ2(α22 + β22) + τ3α23 = P

τ4γ = P. (3.12)

User decoding

At the end of phase 4, user 2 uses joint decoding to decode message m1 = (m10,m11)

based on received signals from both the 1st and 4th phases. Similarly, user 1 decodes

m2 = (m20,m22) based on received signals from both the 2nd and 4th phases.

Theorem 5. The following rate region is achievable for the half-duplex Gaussian two-way
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relay channel with partial decode-forward scheme.

R10 ≤ τ1C

(
g2r1α11

g2r1β11 + 1

)
+ τ3C(g2r1α13) = I1 (3.13a)

R20 ≤ τ2C

(
g2r2α22

g2r2β21 + 1

)
+ τ3C(g2r2α23) = I2 (3.13b)

R11 ≤ τ1C(g221β11) = I3 (3.13c)

R22 ≤ τ2C(g212β22) = I4 (3.13d)

R10 +R20 ≤ τ1C

(
g2r1α11

g2r1β11 + 1

)
+ τ2C

(
g2r2α22

g2r2β21 + 1

)
+ τ3C(g2r1α13 + g2r2α23) = I5 (3.13e)

R10 +R11 ≤ τ1C(g221(α11 + β11)) + τ4C(g22rγ) = I6 (3.13f)

R20 +R22 ≤ τ2C(g212(α22 + β22)) + τ4C(g21rγ) = I7 (3.13g)

with power constraints in (3.12), where τ1 + τ2 + τ3 + τ4 = 1 and C(x) = 1
2

log(1 + x). By

applying Fourier-Motzkin Elimination, the achievable rates in terms of R1 = R10 +R11 and

R2 = R20 +R22 can be expressed as

R1 ≤min{I1 + I3, I6}

R2 ≤min{I2 + I4, I7}

R1 +R2 ≤I3 + I4 + I5. (3.14)

Proof. At the end of the 3rd phase, the relay decodes (m10,m20) based on received signals

from the 1st, 2nd and 3rd phases, which can succeed with high probability if (3.13a), (3.13b)

and (3.13e) are satisfied. During the 4th phase, the relay sends Xr(m10,m20). Based on the

received signals in the 1st phase Y21 and the 4th phase Y41, user 2 can decodem1 = (m10,m11)

with error probability going to zero if (3.13c) and (3.13f) are satisfied. Similarly, user 1 can

decode m2 = (m20,m22) with vanishing error if (3.13d) and (3.13g) are satisfied.

3.3.2 Discussion

Several points can be noted for our proposed PDF scheme as follows:

• For the half-duplex mode, there is no block Markovity. Therefore, encoding and
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decoding are simple and can be done within one block, which is also practical.

• The signaling for each user again involves only 2-part superposition coding which can

be easily implemented in practice.

• It is also interesting to find the optimal power allocations and time slot durations to

maximize the achievable rates as these are of directly practical value. These can be

topics of future work.

• Similar to the full-duplex case, partial decode-forward helps when the direct link is

stronger than the user-to-relay link for one user, while is weaker for the other.

• Our proposed half-duplex PDF scheme again includes both the DF scheme in [7] and

direct transmission as special cases.

3.3.3 Numerical Comparison

We numerically compare the achievable rate regions of partial decode-forward, pure decode-

forward [7] and direct transmission. For direct transmission, we divide each block into two

phases, where user 1 transmits in the first phase and user 2 in the second phase. For pure

decode-forward, we include power scaling to satisfy the power constraint (3.12), which is

different from [7] with fixed power. Hence the DF region here is larger than that in [7].

Figure 3.4 shows that the proposed partial decode-forward scheme achieves strictly larger
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rate region than the other two schemes with new rates outside the time-shared region of

the other two. This result also agrees with the analysis in Theorem 4 that when the direct

link is stronger than the user-to-relay link for one user but is weaker for the other, then

PDF strictly outperforms the time-sharing of both DF and direct transmission.
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Chapter 4

Compress-Forward Without Binning

4.1 Problem Statement

Recently, Lim, Kim, El Gamal and Chung put forward a noisy network coding scheme [5]

for the general multi-source noisy network. This scheme involves three key new ideas. The

first is message repetition, in which the same message is sent multiple times over consecutive

blocks using independent codebooks. Second, each relay does not use Wyner-Ziv binning

but only compresses its received signal and forwards the compression index directly. Third,

each destination performs simultaneous decoding of the message based on signals received

from all blocks without uniquely decoding the compression indices. Compared to the

original CF, it achieves the same rate for the one-way relay channel and achieves a larger

rate region when applied to multi-source networks such as the two-way relay channel.

However, message repetition in noisy network coding brings an infinite delay. To reduce

the delay and analyze the impact of no Wyner-Ziv binning, we propose a compress-forward

scheme without Wyner-Ziv binning but with joint decoding of two consecutive blocks. We

apply it to the one-way and two-way relay channel, and then extend to the relay network.

To analyze the impact of message repetition, we modify the scheme in which the message

is repeated only once or twice. We compare their achievable rate regions and analyze the

improvements each technique can bring.
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4.2 One-Way Relay Channel

4.2.1 Coding Scheme and Achievable Rate

In the original CF scheme [1] [10], the source sends a new message in each block. The relay

forwards the bin index of the description of its received signal. The receiver uses successive

decoding to decode the bin index first, then decode the message from the sender. Here we

analyze a CF scheme in which the relay forwards the index of the description of its received

signal directly without binning while the receiver jointly decodes the index and message at

the same time. We show that CF without binning can achieve same rate as the original

CF scheme with binning.

The encoding and decoding of CF without binning are as follows (also see Table 4.1).

We use a block coding scheme in which each user sends b − 1 messages over b blocks of n

symbols each.

Block . . . j j + 1 . . .

X . . . xn(mj) xn(mj+1) . . .

Yr . . . ŷr(kj|kj−1) ŷr(kj+1|kj) . . .

Xr . . . xnr (kj−1) xnr (kj) . . .

Y . . . k̂j−1, m̂j−1 k̂j, m̂j . . .

Table 4.1 Encoding and decoding of CF without binning for the one-way
relay channel.

Codebook generation

Fix p(x)p(xr)p(ŷr|yr, xr). We randomly and independently generate a codebook for each

block j ∈ [1 : b] as follows.

• Independently generate 2nR sequences xn(mj) ∼
∏n

i=1 p(xi), where mj ∈ [1 : 2nR].

• Independently generate 2nRr sequences xnr (kj−1) ∼
∏n

i=1 p(xri), where kj−1 ∈ [1 :

2nRr ].

• For each kj−1 ∈ [1 : 2nRr ], independently generate 2nRr sequences ŷnr (kj|kj−1) ∼∏n
i=1 p(ŷri|xri(kj−1)) where kj ∈ [1 : 2nRr ].
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Encoding

The source transmits xn(mj) in block j. The relay, upon receiving ynr (j), finds an index kj

such that

(ŷnr (kj|kj−1), ynr (j), xnr (kj−1)) ∈ T (n)
ε ,

where T
(n)
ε denote the strong ε-typical set [11]. Assume that such kj is found, the relay

sends xnr (kj) in block j + 1.

Decoding

Assume the receiver has decoded kj−1 correctly in block j. Then in block j+1, the receiver

finds a unique pair of (m̂j, k̂j) such that

(xnr (k̂j), y
n(j + 1)) ∈ T (n)

ε

and (xn(m̂j), x
n
r (k̂j−1), ŷ

n
r (k̂j|k̂j−1), yn(j)) ∈ T (n)

ε .

Theorem 6. Consider a compress-forward scheme in which the relay does not use Wyner-

Ziv binning but sends the compression index directly and the destination performs joint

decoding of both the message and compression index. The following rate is achievable for

the one-way relay channel:

R ≤ min{I(X,Xr;Y )− I(Ŷr;Yr|X,Xr, Y ), I(X;Y, Ŷr|Xr)} (4.1)

subject to

I(Xr;Y ) + I(Ŷr;X, Y |Xr) ≥ I(Ŷr;Yr|Xr) (4.2)

for some p(x)p(xr)p(ŷr|yr, xr)p(y, yr|x, xr).

Proof. See Appendix A.2.



36 Compress-Forward Without Binning

4.2.2 Comparison with Original Compress-Forward Scheme

Theorem 7. Compress-forward without binning in Theorem 6 achieves the same rate as

the original compress-forward scheme for the one-way relay channel, which is:

R ≤ min{I(X,Xr;Y )− I(Ŷr;Yr|X,Xr, Y ), I(X;Y, Ŷr|Xr)} (4.3)

for some p(x)p(xr)p(ŷr|yr, xr)p(y, yr|x, xr).

Proof. To show that the rate region in Theorem 6 is the same as the rate region in Theorem

7, we need to show that constraint (4.2) is redundant. Note that an equivalent characteri-

zation of the rate region in Theorem 7 is as follows [1] [10] [11]:

R ≤ I(X;Y, Ŷr|Xr) (4.4)

subject to

I(Xr;Y ) ≥ I(Ŷr;Yr|Xr, Y ) (4.5)

for some p(x)p(xr)p(ŷr|yr, xr). Therefore, comparing (4.2) with (4.5), we only need to show

that

I(Ŷr;Yr|Xr, Y ) ≥ I(Ŷr;Yr|Xr)− I(Ŷr;X, Y |Xr).

This is true since

I(Ŷr;Yr|Xr, Y ) = I(Ŷr;Yr, X|Xr, Y )

= I(X; Ŷr|Xr, Y ) + I(Yr; Ŷr|X,Xr, Y )

≥ I(Yr; Ŷr|X,Xr, Y )

= I(Ŷr;X, Y, Yr|Xr)− I(Ŷr;X, Y |Xr)

= I(Ŷr;Yr|Xr)− I(Ŷr;X, Y |Xr).

Remark 3. If using successive decoding, the rate achieved by CF without binning is strictly

less than that with binning. Thus joint decoding is crucial for CF without binning.
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Remark 4. Joint decoding does not help improve the rate of the original CF with binning.

Remark 5. Binning technique plays a role of allowing successive decoding instead of joint

decoding, thus reduces destination decoding complexity. However, it has no impact on the

achievable rate for the one-way relay channel. This effect on decoding complexity is similar

to that in decode-forward, in which binning allows successive decoding [1] while no binning

requires backward decoding [35].

Remark 6. For the one-way relay channel, CF without binning achieves the same rate

region as GHF [15]. However, GHF differs from CF without binning in that the relay still

performs binning. In the decoding of GHF, the destination first decode the compression

indices into a list, and then use this list to help decode the source message. However, in

CF without binning, the receiver performs joint decoding of the compression index and

message.

Remark 7. An obvious benefit of this short message CF without binning scheme compared

to noisy network coding is short encoding and decoding delay. A few other benefits such

as low modulation complexity and potential MIMO gain are also recognized in [17].

Remark 8. For the one-way relay channel, all the following schemes achieve the same rate:

the original CF, CF without binning (QF), GHF, and noisy network coding. The difference

in achievable rate only appears when applying to a multi-source and multi-destination

network.

4.3 Two-Way Relay Channel

4.3.1 Coding Scheme and Achievable Rate Region

In this section, we extend CF without Wyner-Ziv binning but with joint decoding of both

the message and compression index to the two-way relay channel. We then compare the

achievable rate region with those by the original CF scheme and noisy network coding.

Compared with the original CF [2], CF without binning achieves a strictly larger rate

region when the channel is asymmetric for the two users. Binning and successive decoding

constrains the compression rate to the weaker of the channels from relay to two users.

But without binning, this constraint is relaxed. Compared with noisy network coding, CF

without binning achieves a smaller rate region. In CF without binning, the users need to
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Block . . . j j + 1 . . .

X1 . . . xn1 (m1,j) xn1 (m1,j+1) . . .

X2 . . . xn2 (m2,j) xn2 (m2,j+1) . . .

Yr . . . ŷr(kj|kj−1) ŷr(kj+1|kj) . . .

Xr . . . xnr (kj−1) xnr (kj) . . .

Y1 . . . k̂j−1, m̂2,j−1 k̂j, m̂2,j . . .

Y2 . . . k̂j−1, m̂1,j−1 k̂j, m̂1,j . . .

Table 4.2 Encoding and decoding of CF without binning for the two-way
relay channel.

decode the compression index precisely, which brings an extra constraint on the compression

rate. However, this precise decoding is not necessary in noisy network coding.

Before presenting the achievable rate region of CF without binning, we outline its

encoding and decoding techniques as follows. In each block, each user sends a new message

using an independently generated codebook. At the end of each block, the relay finds

a description of its received signal from both users. Then it sends the codeword for the

description index at the next block (instead of partitioning the description index into bins

and sending the codeword for the bin index as in the original CF scheme). Each user jointly

decodes the description index and message from the other user based on signals received

in both the current and previous blocks. This decoding technique is different from that in

the original decode-forward scheme, in which each user first decodes the bin index from the

relay, and then decodes the message from the other user.

Specifically, we use a block coding scheme in which each user sends b− 1 messages over

b blocks of n symbols each (also see Table 4.2).

Codebook generation

Fix joint distribution p(x1)p(x2)p(xr)p(ŷr|xr, yr). Randomly and independently generate a

codebook for each block j ∈ [1 : b]

• Independently generate 2nR1 sequences xn1 (m1,j) ∼
∏n

i=1 p(x1i), where m1,j ∈ [1 :

2nR1 ].
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• Independently generate 2nR2 sequences xn2 (m2,j) ∼
∏n

i=1 p(x2i), where m2,j ∈ [1 :

2nR2 ].

• Independently generate 2nRr sequences xnr (kj−1) ∼
∏n

i=1 p(xri), where kj−1 ∈ [1 :

2nRr ].

• For each kj−1 ∈ [1 : 2nRr ], independently generate 2nRr sequences ŷnr (kj|kj−1) ∼∏n
i=1 p(ŷri|xri(kj−1)), where kj ∈ [1 : 2nRr ].

Encoding

User 1 and user 2 respectively transmit xn1 (m1,j) and xn2 (m2,j) in block j. The relay, upon

receiving ynr (j), finds an index kj such that

(ŷnr (kj|kj−1), ynr (j), xnr (kj−1)) ∈ T (n)
ε .

Assume that such kj is found, the relay sends xnr (kj) in block j + 1.

Decoding

We discuss the decoding at user 1. Assume user 1 has decoded kj−1 correctly in block j.

Then in block j + 1, user 1 finds a unique pair of (m̂2,j, k̂j) such that

(xn2 (m̂2,j), x
n
r (k̂j−1), ŷ

n
r (k̂j|k̂j−1), yn1 (j), xn1 (m1,j)) ∈ T (n)

ε

and (xnr (k̂j), y
n
1 (j + 1), xn1 (m1,j+1)) ∈ T (n)

ε . (4.6)

Theorem 8. The following rate region is achievable for the two-way relay channel by using

compress-forward without binning but with joint decoding:

R1 ≤ min{I(X1;Y2, Ŷr|X2, Xr), I(X1, Xr;Y2|X2)− I(Ŷr;Yr|X1, X2, Xr, Y2)}

R2 ≤ min{I(X2;Y1, Ŷr|X1, Xr), I(X2, Xr;Y1|X1)− I(Ŷr;Yr|X1, X2, Xr, Y1)} (4.7)

subject to

I(Ŷr;Yr|X1, X2, Xr, Y1) ≤ I(Xr;Y1|X1)

I(Ŷr;Yr|X1, X2, Xr, Y2) ≤ I(Xr;Y2|X2) (4.8)
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for some p(x1)p(x2)p(xr)p(y1, y2, yr|x1, x2, xr)p(ŷr|xr, yr).

Proof. See Appendix A.3.

4.3.2 Comparison with Original Compress-Forward Scheme

In this section, we first present the rate region achieved by the original CF scheme for the

two way relay channel as in [2]. We then show that CF without binning but with joint

decoding can achieve a larger rate region.

We outline the encoding and decoding techniques of the original CF scheme as follows.

In each block, each user sends a new message using an independently generated codebook.

At the end of each block, the relay finds a description of its received signal from both users.

Then it partitions the description index into equal-size bins and sends the codeword for

the bin index. Each user applies 3-step successive decoding, in which it first decodes the

bin index from the relay, then decodes the compression index within that bin, and at last

decodes the message from the other user.

Theorem 9. [Rankov and Wittneben]. The following rate region is achievable for two-way

relay channel with the original compress-forward scheme:

R1 ≤ I(X1;Y2, Ŷr|X2, Xr)

R2 ≤ I(X2;Y1, Ŷr|X1, Xr) (4.9)

subject to

max(I(Ŷr;Yr|X1, Xr, Y1), I(Ŷr;Yr|X2, Xr, Y2)) ≤ min(I(Xr;Y1|X1), I(Xr;Y2|X2)) (4.10)

for some p(x1)p(x2)p(xr)p(y1, y2, yr|x1, x2, xr)p(ŷr|xr, yr).

We present a short proof of this theorem in Appendix A.4 to show the difference from

CF without binning. The proof follows the same lines as in [2], but we also correct an error

in the analysis of [2] as pointed out in Remark 30 in Appendix A.4.

Proof. See Appendix A.4.
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Theorem 10. In the two-way relay channel, the rate region achieved by compress-forward

without binning in Theorem 8 is larger than the rate region achieved by the original compress-

forward scheme in Theorem 9 when the channel is asymmetric for the two users. The two

regions may be equal only if the channel is symmetric, that is the following conditions holds:

I(Xr;Y1|X1) = I(Xr;Y2|X2)

I(Ŷr;Yr|X1, Xr, Y1) = I(Ŷr;Yr|X2, Xr, Y2). (4.11)

Furthermore, (4.11) is only necessary but may not be sufficient.

Proof. First, we show that the constraint on the compression rate of Theorem 8 is looser

than that of Theorem 9. This is true since from (4.10), we have

I(Xr;Y1|X1) ≥ I(Ŷr;Yr|X1, Xr, Y1)

= I(Ŷr;X2, Yr|X1, Xr, Y1)

≥ I(Ŷr;Yr|X1, X2, Xr, Y1) (4.12)

where (4.12) is the right-hand-side of the first term in (4.8). Similar for the other term.

Next we show that (4.9) and (4.10) imply (4.7). From (4.9), we have

R2 ≤ I(X2;Y1, Ŷr|X1, Xr)

= I(X2;Y1|X1, Xr) + I(Ŷr;X2|Y1, X1, Xr)

= I(X2, Xr;Y1|X1)− I(Xr;Y1|X1) + I(Ŷr;X2|Y1, X1, Xr)

(a)

≤ I(X2, Xr;Y1|X1)− I(Ŷr;Yr|X1, Xr, Y1) + I(Ŷr;X2|Y1, X1, Xr)

= I(X2, Xr;Y1|X1)− I(Ŷr;Yr|X1, X2, Xr, Y1)

where (a) follows from the constraint of (4.10) in Theorem 9. The equality holds when

I(Xr;Y1|X1) = min{I(Xr;Y1|X1), I(Xr;Y2|X2)}

= I(Ŷr;Yr|X1, Xr, Y1)

= max(I(Ŷr;Yr|X1, Xr, Y1), I(Ŷr;Yr|X2, Xr, Y2)).
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Similar for R1, the equality holds when

I(Xr;Y2|X2) = min{I(Xr;Y1|X1), I(Xr;Y2|X2)}

= I(Ŷr;Yr|X2, Xr, Y2)

= max(I(Ŷr;Yr|X1, Xr, Y1), I(Ŷr;Yr|X2, Xr, Y2)).

The above analysis shows that at the boundary of the compression rate constraint (4.10),

the rate region of CF without binning (4.7) is equivalent to that of the original CF (4.9).

However, since constraint (4.8) is loser than (4.10), the rate region in Theorem 8 is larger

than that in Theorem 9. Only if condition (4.11) holds, the original CF scheme may achieve

the same rate region as CF without binning; otherwise, its rate region is strictly smaller.

Remark 9. For the two-way relay channel, binning and successive decoding constrains the

compression rate to the weaker of the channels from relay to two users. But without

binning, this constraint is relaxed. Thus CF without binning achieves a larger rate region

than the original CF scheme when then channel is asymmetric for the two users.

4.3.3 Comparison with Noisy Network Coding

In this section, we compare the rate region achieved by CF without binning with that by

noisy network coding [5] for the two way relay channel. The main differences between

these two schemes are as follows. In CF without binning, different messages are sent over

different blocks, but in noisy network coding, the same message is sent in multiple blocks

using independent codebooks. Furthermore, in noisy network coding, each user performs

simultaneous joint decoding of the message based on signals received from all blocks without

uniquely decoding the compression indices (i.e. relaxed joint decoding). But in CF without

binning, each user jointly decodes both the message and compression index precisely based

on signals received from the current and previous blocks.

Theorem 11. [Lim, Kim, El Gamal and Chung]. The following rate region is achievable

for the two-way relay channel with noisy network coding:

R1 ≤ min{I(X1;Y2, Ŷr|X2, Xr), I(X1, Xr;Y2|X2)− I(Ŷr;Yr|X1, X2, Xr, Y2)}

R2 ≤ min{I(X2;Y1, Ŷr|X1, Xr), I(X2, Xr;Y1|X1)− I(Ŷr;Yr|X1, X2, Xr, Y1)} (4.13)
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for some p(x1)p(x2)p(xr)p(y1, y2, yr|x1, x2, xr)p(ŷr|xr, yr).

Comparing Theorem 8 with Theorem 11, we find that the rate constraints (4.7) for R1

and R2 in CF without binning are the same as those in noisy network coding (4.13). How-

ever, CF without binning has an extra constraint on the compression rate (4.8). Therefore,

in general, CF without binning achieves a smaller rate region than noisy network coding.

Remark 10. In noisy network coding, the combination of message repetition and relaxed

joint decoding is necessary in addition to compress-forward without binning to achieve a

better rate region than that in Theorem 8 for the TWRC.

4.4 Implication for Relay Networks

From the discussion for the one-way and two-way relay channels, we can acquire some

implications for the general relay networks. The relay network model is shown in section

2.3. Noisy network coding is proposed for the general relay network in [5]. Three new

ideas are used in noisy network coding. One is no Wyner-Ziv binning in relay operation.

Another is simultaneous joint decoding of the message over all blocks without uniquely

decoding the compression indices. Last is message repetition, in which the same message

is sent in multiple blocks using independent codebooks. Next, we discuss the effect of each

of these ideas separately.

4.4.1 Implication of no Wyner-Ziv Coding

Generalizing from the two-way relay channel, we can conclude that CF without binning

achieves a larger rate region than the original CF scheme for networks with multiple des-

tinations. With binning and successive decoding, the compression rate is constrained by

the weakest link from a relay to a destination, as in (A.24). But with joint decoding of

the message and compression indices, this constraint is more relaxed since each destination

can also use the signals received from other links, including the direct links, to decode

the compression indices and provides relays more freedom to choose the compression rates.

This explains why for the two-way relay channel, the constraint on compression rate in

CF without binning (4.8) is looser than that in the original CF scheme (4.10). Therefore,

with joint decoding, Wyner-Ziv binning is not necessary. No binning also simplifies relay

operation.
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Remark 11. Joint decoding of both the message and compression index is crucial for CF

without binning. Without joint decoding, it achieves strictly smaller rate than the original

CF with binning for any network.

4.4.2 Implication of Joint Decoding without Explicitly Decoding Compression

Indices

A difference between CF without binning and noisy network coding comes from the de-

coding of the compression indices. For both schemes, the compression rate at a relay is

lower bounded by the covering lemma. But in noisy network coding, each destination does

not decode the compression indices explicitly, hence there are no additional constraints

on the compression rate. However, in CF without binning, each destination decodes the

compression indices precisely; this decoding places extra upper bounds on the compression

rate, leading to the constraints on compression rate as in (4.8).

The above analysis prompts the question: what if in CF without binning, we also do

not decode the compression index precisely, can we achieve the same rate region as noisy

network coding? The following analysis shows that the answer is negative. Take the two-

way relay channel as an example. In the next few sections, we apply several joint decoding

rules to enlarge the rate region.

Relaxed joint decoding of a single message without decoding the compression

indices uniquely

Using the same codebook generation and encoding as in CF without binning in Section

4.3.1, but we change the decoding rule in (4.6) to as follows. In block j + 1, user 1 finds a

unique m̂2,j such that

(xn2 (m̂2,j), x
n
r (k̂j−1), ŷ

n
r (k̂j|k̂j−1), yn1 (j), xn1 (m1,j)) ∈ T (n)

ε

and (xnr (k̂j), y
n
1 (j + 1), xn1 (m1,j+1)) ∈ T (n)

ε (4.14)

for some pair of indices (k̂j−1, k̂j). With this decoding rule, the error event E3j which

corresponds to wrong compression index only (see Appendix A.3) no longer applies, but

other new error events appear in which k̂j−1 6= 1 (see the detailed error analysis in Appendix

A.5). With decoding rule (4.14), we have following Corollary:
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Corollary 1. For the two-way relay channel, the following rate region is achievable by CF

without binning using joint decoding but without decoding the compression index precisely:

R1 ≤ I(X1;Y2, Ŷr|X2, Xr) (4.15a)

R1 ≤ I(X1, Xr;Y2|X2)− I(Ŷr;Yr|X1, X2, Xr, Y2) (4.15b)

R1 ≤ I(X1, Xr;Y2|X2)− I(Ŷr;Yr|X1, X2, Xr, Y2) + I(Xr;Y2|X2)− I(Ŷ ;Y2|Xr) (4.15c)

R2 ≤ I(X2;Y1, Ŷr|X1, Xr) (4.15d)

R2 ≤ I(X2, Xr;Y1|X1)− I(Ŷr;Yr|X1, X2, Xr, Y1) (4.15e)

R2 ≤ I(X2, Xr;Y1|X1)− I(Ŷr;Yr|X1, X2, Xr, Y1) + I(Xr;Y1|X1)− I(Ŷ ;Y1|Xr) (4.15f)

for some p(x1)p(x2)p(xr)p(y1, y2, yr|x1, x2, xr)p(ŷr|xr, yr).

Proof. See Appendix A.5.

In above rate region, although the new decoding rule (4.14) removes the constraint on

compression rate, it brings two new rate constraints (4.15c) (4.15f). Hence the rate region

in (4.15) is still smaller than that of noisy network coding in (4.13). These two extra rate

constraints come from the block boundary condition when performing joint decoding over

two blocks. Specifically, it corresponds to the error event E7j in Appendix A.5, in which all

the compression indices and message are wrong. The boundary condition results from the

second decoding rule in (4.14) in which not all input and output signals are involved.

Simultaneous joint decoding of all messages without decoding compression in-

dices uniquely

To reduce the boundary effect, we try simultaneous decoding of all messages over all blocks,

again without decoding the compression indices uniquely. We use the same codebook

generation and encoding as in CF without binning in Section 4.3.1, but use a different

decoding rule at the destination. The destination now jointly decodes all messages based

on the signals received in all blocks, without decoding the compression indices explicitly.

Specifically, user 1 now finds a unique tuple (m2,1, . . .m2,j, . . .m2,b−1) at the end of block b
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such that

(xn2 (m2,1), x
n
r (1), ŷnr (k1|1), yn1 (1), xn1 (m1,1)) ∈ T (n)

ε (4.16a)

(xn2 (m2,2), x
n
r (k1), ŷ

n
r (k2|k1), yn1 (2), xn1 (m1,2)) ∈ T (n)

ε

...

(xn2 (m2,j), x
n
r (kj−1), ŷ

n
r (kj|kj−1), yn1 (j), xn1 (m1,j)) ∈ T (n)

ε

...

(xn2 (m2,b−1), x
n
r (kb−2), ŷ

n
r (kb−1|kb−2), yn1 (b− 1), xn1 (m1,b−1)) ∈ T (n)

ε (4.16b)

(xn2 (1), xnr (kb−1), ŷ
n
r (kb|kb−1), yn1 (b), xn1 (1)) ∈ T (n)

ε (4.16c)

for some indices (k1, . . . kj, . . . kb−1, kb).

To compare its achievable rate region with noisy network coding, we consider the error

event in which m2,1 and kb are wrong while all other messages and indices are right. This

error event involves the decoded joint distributions from (4.16a) and (4.16c) as follows.

p(x1)p(x2)p(xr)p(y1, ŷr|x1, xr)

p(x1)p(x2)p(xr)p(ŷr|xr)p(y1|x1, x2, xr)

By the packing lemma, the probability of the above error event goes to zero as n→∞ if

R2 +Rr ≤ I(X2;Y1, Ŷr|X1, Xr) + I(Ŷr;X1, X2, Y1|Xr) (4.17)

Since Rr > I(Ŷr;Yr|Xr) by the covering lemma [11], we obtain

R2 ≤ I(X2;Y1, Ŷr|X1, Xr) + I(Ŷr;X1, X2, Y1|Xr)− I(Ŷr;Yr|Xr)

= I(X2;Y1, Ŷr|X1, Xr)− I(Ŷr;Yr|X1, X2, Xr, Y1) (4.18)

which is tighter than the constraint (4.13) in noisy network coding. Again we see the

boundary effect at the last block when kb is wrong.
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Simultaneous joint decoding of all messages but ignoring the last compression

index

Since in the last block, each source sends a known message, the last compression index

kb brings no new information. Hence we may choose to omit it in the decoding rule

to see if the rate region can be improved. Specifically, user 1 now finds a unique tuple

(m2,1, . . .m2,j, . . .m2,b−1) at the end of block b such that

(xn2 (m2,1), x
n
r (1), ŷnr (k1|1), yn1 (1), xn1 (m1,1)) ∈ T (n)

ε (4.19a)

(xn2 (m2,2), x
n
r (k1), ŷ

n
r (k2|k1), yn1 (2), xn1 (m1,2)) ∈ T (n)

ε

...

(xn2 (m2,j), x
n
r (kj−1), ŷ

n
r (kj|kj−1), yn1 (j), xn1 (m1,j)) ∈ T (n)

ε

...

(xn2 (m2,b−1), x
n
r (kb−2), ŷ

n
r (kb−1|kb−2), yn1 (b− 1), xn1 (m1,b−1)) ∈ T (n)

ε (4.19b)

(xn2 (1), xnr (kb−1), y
n
1 (b), xn1 (1)) ∈ T (n)

ε (4.19c)

for some indices (k1, . . . kj, . . . kb−1). Note that (4.19c) is the only step that is different from

(4.16c).

To compare its achievable rate region with noisy network coding, we consider the error

event in which m2,1 and kb−1 are wrong while all other messages and indices are right. This

error event involves the decoded joint distributions from (4.19a), (4.19b) and (4.19c) as

follows.

p(x1)p(x2)p(xr)p(y1, ŷr|x1, xr)

p(x1)p(x2)p(xr)p(ŷr|xr)p(y1|x1, x2, xr)

p(x1)p(x2)p(xr)p(y1|x1, x2)

By the packing lemma, the probability of the above error event goes to zero as n→∞ if

R2 +Rr ≤ I(X2;Y1, Ŷr|X1, Xr) + I(Xr;Y1|X1, X2) + I(Ŷr;X1, X2, Y1|Xr).
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Since Rr > I(Ŷr;Yr|Xr), we obtain

R2 ≤ I(X2;Y1, Ŷr|X1, Xr) + I(Xr;Y1|X1, X2) + I(Ŷr;X1, X2, Y1|Xr)− I(Ŷr;Yr|Xr)

= I(X2;Y1, Ŷr|X1, Xr) + I(Xr;Y1|X1, X2)− I(Ŷr;Yr|X1, X2, Xr, Y1) (4.20)

Although rate constraint (4.20) is loser than (4.18), it is still tighter than the rate constraint

of noisy network coding in (4.13) (we can easily check this for the Gaussian TWRC).

Therefore, simultaneous decoding of all messages over all blocks still achieves a smaller

rate region than noisy network coding.

Remark 12. Joint decoding without explicitly decoding the compression indices removes

the constraints on compression rates but still achieves a smaller rate region than noisy

network coding for the general multi-source network.

Remark 13. Simultaneous joint decoding of all messages over all blocks still does not over-

come the block boundary limitation, caused by the last block in which no new messages

but only the compression indices are sent.

Remark 14. In [22], a technique of appending M blocks for transmission of the compres-

sion indices only is proposed to reduce the block boundary effect, but it also reduces the

achievable rate by a non-vanishing amount.

The above analysis leads us to discuss the effect of message repetition, in which the

same message is transmitted over multiple blocks.

4.4.3 Implication of Message Repetition

Message repetition is performed in noisy network coding by sending the same message in

multiple, consecutive blocks using independent codebooks. To understand the effect of

message repetition, we use the same decoding rule as in the previous section (decoding

the message without explicitly decoding the compression indices) and repeat the message

twice. Now each user transmits the same message in every two consecutive blocks. We

compare the achievable rate region of this scheme with those of no message repetition and

of noisy network coding, in which each message is repeated b times and b approaches to

infinity.

Again take the two-way relay channel as an illustrative example. Let each user transmit

the same message in every two blocks using independent codebooks. Decoding is performed
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Block . . . 2j − 1 2j 2j + 1

X1 . . . xn1,2j−1(m1,j) xn1,2j(m1,j) xn1,2j+1(m1,j+1)

X2 . . . xn2,2j−1(m2,j) xn2,2j(m2,j) xn2,2j+1(m2,j+1)

Yr . . . ŷr(k2j−1|k2j−2) ŷr(k2j|k2j−1) ŷr(k2j+1|k2j)

Xr . . . xnr (k2j−2) xnr (k2j−1) xnr (k2j)

Y1 . . . m̂2,j−1 for some (k2j−4, k2j−3, k2j−2) – m̂2,j for some (k2j−2, k2j−1, k2j)

Y2 . . . m̂1,j−1 for some (k2j−4, k2j−3, k2j−2) – m̂1,j for some (k2j−2, k2j−1, k2j)

Table 4.3 Encoding and decoding of CF without binning but with twice
message repetition for the two-way relay channel.

at the end of every two blocks based on signals received from the current and previous two

blocks. Specifically, the codebook generation, encoding and decoding are as follows (also

see Table 4.3). We use a block coding scheme in which each user sends b messages over

2b+ 1 blocks of n symbols each.

Codebook generation

At block l ∈ {2j − 1, 2j}:

• Independently generate 2n2R1 sequences xn1,l(m1,j) ∼
∏n

i=1 p(x1i), where m1,j ∈ [1 :

2n2R1 ].

• Independently generate 2n2R2 sequences xn2,l(m2,j) ∼
∏n

i=1 p(x2i), where m2,j ∈ [1 :

2n2R2 ].

• Independently generate 2nRr sequences xnr (kl) ∼
∏n

i=1 p(xri), where kl ∈ [1 : 2nRr ].

• For each kl ∈ [1 : 2nRr ], independently generate 2nRr sequences ŷnr (kl+1|kl) ∼
∏n

i=1 p(ŷri|
xri(kl)), where kl+1 ∈ [1 : 2nRr ].

Encoding

In blocks 2j − 1 and 2j, user 1 transmits xn1,2j−1(m1,j) and xn1,2j(m1,j) respectively. User 2

transmits xn2,2j−1(m2,j) and xn2,2j(m2,j).
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In block j, the relay, upon receiving ynr (j), finds an index kj such that

(ŷnr (kj|kj−1), ynr (j), xnr (kj−1)) ∈ T (n)
ε .

Assume that such kj is found, the relay sends xnr (kj) in block j + 1.

Decoding

We discuss the decoding at user 1. User 1 decodes m2,j at the end of block 2j + 1.

Specifically, it finds a unique m̂2,j such that

(xn2,2j−1(m̂2,j), x
n
r (k̂2j−2), ŷ

n
r (k̂2j−1|k̂2j−2), yn1 (2j − 1), xn1,2j−1(m1,j)) ∈ T (n)

ε

(xn2,2j(m̂2,j), x
n
r (k̂2j−1), ŷ

n
r (k̂2j|k̂2j−1), yn1 (2j), xn1,2j(m1,j)) ∈ T (n)

ε

and (xnr (k̂2j), y
n
1 (2j + 1), xn1,2j+1(m1,j+1)) ∈ T (n)

ε (4.21)

for some (k̂2j−2, k̂2j−1, k̂2j).

Corollary 2. For the two-way relay channel, the following rate region is achievable by CF

without binning and without explicitly decoding the compression indices when repeating each

message twice:

R1 ≤ I(X1;Y2, Ŷr|X2, Xr) (4.22a)

R1 ≤ I(X1, Xr;Y2|X2)− I(Ŷr;Yr|X1, X2, Xr, Y2) (4.22b)

R1 ≤ I(X1, Xr;Y2|X2)− I(Ŷr;Yr|X1, X2, Xr, Y2) +
1

2
[I(Xr;Y2|X2)− I(Ŷ ;Y2|Xr)] (4.22c)

R2 ≤ I(X2;Y1, Ŷr|X1, Xr) (4.22d)

R2 ≤ I(X2, Xr;Y1|X1)− I(Ŷr;Yr|X1, X2, Xr, Y1) (4.22e)

R2 ≤ I(X2, Xr;Y1|X1)− I(Ŷr;Yr|X1, X2, Xr, Y1) +
1

2
[I(Xr;Y1|X1)− I(Ŷ ;Y1|Xr)] (4.22f)

for some p(x1)p(x2)p(xr)p(y1, y2, yr|x1, x2, xr)p(ŷr|xr, yr).

Proof. See Appendix A.6.

Comparing the above rate region with that of CF without message repetition in (4.15)

and noisy network coding in (4.13), we find that the extra rate constraints (4.15c) and



4.4 Implication for Relay Networks 51

(4.15f) are relaxed by repeating the message twice. The additional term is divided by 2,

which comes from the error event Er10j in Appendix A.6, in which the message and all

compression indices are wrong. This event also corresponds to a boundary event, but since

decoding rule (4.21) spans more blocks, the boundary effect is lessen.

Thus if we repeat the messages b times, this additional term will be divided by b.

Taking b to infinity as in noisy network coding completely eliminates the additional terms

in (4.22c) and (4.22f). Hence the rate region is increasing with the number of times for

message repetition. To achieve the largest rate region, the message repetition times need to

be infinity. Therefore, noisy network coding has b blocks decoding delay and b is required

to approach infinity.

Remark 15. Message repetition brings more correlation between different blocks. It helps

lessen the boundary effect when increasing the repetition times.

Remark 16. Message repetition is necessary for achieving the noisy network coding rate re-

gion in multi-source networks. Furthermore, the repetition times need to approach infinity.

Remark 17. This result is different from the single-source single-destination result in [22]

which shows backward decoding without message repetition achieves the same rate as noisy

network coding, albeit at an expense of extending the relay forwarding times infinitely

without actually sending a new message. Thus message repetition appears to be essential

in a multi-source network.

Remark 18. Recent result in [23] by Hou and Kramer is different from our conclusion where

they show that short message NNC can achieve the same rate as NNC even for the multi-

source multi-destination network. This is because there are extra K(K−1) blocks (K is the

number of nodes which is fixed for a specific network) via which each node tries to convey

the compression index in the last block (block b) to all other nodes. In their decoding, each

node first reliably recovers the compression index in the last block, and then uses backward

decoding. This broadcasting and decoding of the last block compression index turns out

ot be crucial in removing the boundary effect and achieving the same rate as repeating the

message as in NNC.
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4.5 Gaussian Two-Way Relay Channel

In this section, we focus on the Gaussian two-way relay channel. We compare the rate

regions of CF without binning, the original CF and noisy network coding. We also derive

the analytical condition for when CF without binning achieves the same rate region or sum

rate as noisy network coding.

4.5.1 Achievable Rate Region by CF without Binning

In the Gaussian two-way relay channel model, assume

X1 ∼ N (0, P ), X2 ∼ N (0, P ),

Xr ∼ N (0, P ), Ẑ ∼ N (0, σ2), (4.23)

where X1, X2, Xr and Ẑ are independent, and Ŷr = Yr + Ẑ. Denote

R11(σ
2) = C

(
g221P +

g2r1P

1 + σ2

)
R12(σ

2) = C(g221P + g22rP )− C(1/σ2)

R21(σ
2) = C

(
g212P +

g2r2P

1 + σ2

)
R22(σ

2) = C(g212P + g21rP )− C(1/σ2), (4.24)

where C(x) = 1
2

log(1 + x). Then we have following rate region using CF without binning.

Theorem 12. The following rate region is achievable for the Gaussian two-way relay chan-

nel using compress-forward without binning:

R1 ≤ min{R11(σ
2), R12(σ

2)}

R2 ≤ min{R21(σ
2), R22(σ

2)} (4.25)

for some σ2 ≥ max{σ2
c1, σ

2
c2}, where

σ2
c1 = (1 + g221P )/(g22rP )

σ2
c2 = (1 + g212P )/(g21rP ), (4.26)
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and R11(σ
2), R12(σ

2), R21(σ
2), R22(σ

2) are as defined in (4.24).

Proof. Applying the rate region in Theorem 8 with the signaling in (4.23), we obtain

(4.25).

4.5.2 Rate Region Comparison with the Original CF Scheme

We now compare the rate regions of CF without binning in Theorem 12 and the original

CF in [2] for the Gaussian two-way relay channel. We first present the rate region achieved

by the original CF scheme.

Corollary 3. [Rankov and Wittneben]. The following rate region is achievable for the

Gaussian two-way relay channel using the original compress-forward scheme:

R1 ≤ R11(σ
2)

R2 ≤ R21(σ
2) (4.27)

for some σ2 ≥ σ2
r , where

σ2
r = max

{
1 + g221P + g2r1P

min{g22r, g21r}P
,
1 + g212P + g2r2P

min{g22r, g21r}P

}
(4.28)

and R11(σ
2), R21(σ

2) are as defined in (4.24).

The following result shows the condition for which the original CF achieves the same

rate region as CF without binning.

Theorem 13. The original compress-forward scheme achieves the same rate region as

compress-forward without binning for the Gaussian TWRC if and only if

g1r = g2r

g221 + g2r1 = g212 + g2r2. (4.29)

Otherwise the rate region by the original compress-forward scheme is smaller.

Remark 19. Condition (4.29) for the Gaussian TWRC is both sufficient and necessary, and

hence is stricter than the result for the DMC case in Theorem 10, which is only necessary.
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Proof. Note that both R11(σ
2), R21(σ

2) in (4.24) are non-increasing and R12(σ
2), R22(σ

2)

are non-decreasing. Let σ2
e1 be the intersection between R11(σ

2) and R21(σ
2) (similar for

σ2
e2) as:

R11(σ
2
e1) = R12(σ

2
e1)

R21(σ
2
e2) = R22(σ

2
e2).

Then we can easily show that

σ2
e1 = (1 + g221P + g2r1P )/(g22rP )

σ2
e2 = (1 + g212P + g2r2P )/(g21rP ). (4.30)

Therefore, min{R11(σ
2), R12(σ

2)} is maximized when σ2 = σ2
e1, while min{R21(σ

2), R22(σ
2)}

is maximized when σ2 = σ2
e2. Noting that σ2

r ≥ σ2
e1, σ

2
r ≥ σ2

e2 and σ2
e1 ≥ σ2

c1, σ
2
e2 ≥ σ2

c2, we

conclude that the rate region in Theorem 12 is the same as that in Corollary 3 if and only

if σ2
r = σ2

e1 = σ2
e2. From this equality, we obtain the result in Theorem 13.

4.5.3 Rate Region Comparison with Noisy Network Coding

We next compare the rate regions of CF without binning and noisy network coding [5] for

the Gaussian two-way relay channel. We first present the rate region achieved by noisy

network coding.

Corollary 4. [Lim, Kim, El Gamal and Chung]. The following rate region is achievable

for the Gaussian two-way relay channel with noisy network coding:

R1 ≤ min{R11(σ
2), R12(σ

2)}

R2 ≤ min{R21(σ
2), R22(σ

2)} (4.31)

for some σ2 > 0, where R11(σ
2), R12(σ

2), R21(σ
2), R22(σ

2) are defined in (4.24).

The following result shows the condition for which CF without binning achieves the

same rate region as noisy network coding.
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Fig. 4.1 Rate regions for P = 20, gr1 = g1r = 2, gr2 = g2r = 0.5, g12 = g21 =
0.1.

Theorem 14. Compress-forward without binning achieves the same rate region as noisy

network coding for the Gaussian TWRC if and only if

σ2
c1 ≤ σ2

e2

σ2
c2 ≤ σ2

e1, (4.32)

where σ2
e1, σ

2
e2 are defined in (4.30) and σ2

c1, σ
2
c2 are defined in (4.26). Otherwise, the rate

region by compress-forward without binning is smaller.

Proof. Similar to the proof of Theorem 13, note that both R11(σ
2), R21(σ

2) are non-

increasing and R12(σ
2), R22(σ

2) are non-decreasing. Also,

R11(σ
2
e1) = R12(σ

2
e1)

R21(σ
2
e2) = R22(σ

2
e2).

Therefore, the constraint in Theorem 12 is redundant if and only if

max{σ2
c1, σ

2
c2} ≤ min{σ2

e1, σ
2
e2}. (4.33)

Since σ2
c1 ≤ σ2

e1 and σ2
c2 ≤ σ2

e2 always hold, the above condition (4.33) is equivalent to

(4.32).
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Fig. 4.2 Rate regions for P = 20, gr1 = 0.5, g1r = 2, gr2 = 2, g2r = 0.5, g12 =
g21 = 0.1.

Remark 20. If condition (4.29) holds, then condition (4.32) also holds. Thus when the

original CF achieves the same rate region as CF without binning, it also achieves the same

rate region as noisy network coding for the Gaussian TWRC.

Figure 4.1 shows an asymmetric channel configuration in which CF without binning

achieves a strictly larger rate region than the original CF scheme, but strictly smaller than

noisy network coding. Figure 4.2 shows a case that CF without binning achieves the same

rate region as noisy network coding and larger than CF with binning.

4.5.4 Sum Rate Comparison with Noisy Network Coding

We notice that in some cases, even though CF without binning achieves smaller rate region

than noisy network coding, it still has the same sum rate. Thus we are interested in the

channel conditions under which CF without binning and noisy network coding achieve the

same sum rate.

Without loss of generality, assume σ2
e1 ≥ σ2

e2 as in (4.30). First we analytically derive

the optimal σ2 that maximizes the sum rate of noisy network coding.

Corollary 5. Let σ2
N denotes the optimal σ2 that maximizes the sum rate of the Gaussian
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TWRC using noisy network coding. Define σ2
N1 and σ2

N2 as follows:

if σ2
e1 ≥ σ2

g ≥ σ2
e2, σ

2
N1 = σ2

g ;

if σ2
g > σ2

e1 or σ2
g ≤ 0, σ2

N1 = σ2
e1;

if σ2
e2 > σ2

g > 0, σ2
N1 = σ2

e2; (4.34)

and

if σ2
e1 ≥ σ2

g ≥ σ2
z1, σ

2
N2 = σ2

g ;

if σ2
g > σ2

e1 or σ2
g ≤ 0, σ2

N2 = σ2
e1;

if σ2
z1 > σ2

g > 0, σ2
N2 = σ2

z1, (4.35)

where

σ2
g =

g2r2P + g212P + 1

g2r2P − g212P − 1
,

σ2
z1 =

1

g221P + g22rP
.

Then,

if σ2
z1 ≤ σ2

e2, then σ2
N = σ2

N1;

if σ2
z1 > σ2

e2, then

if R21(σ
2
e2) ≤ R12(σ

2
N2) +R21(σ

2
N2), σ

2
N = σ2

N2;

if R21(σ
2
e2) > R12(σ

2
N2) +R21(σ

2
N2), σ

2
N = σ2

e2. (4.36)

Proof. See Appendix A.7.1.

Based on Theorem 12 and Corollary 5, we now obtain the following result on the

conditions for CF without binning to achieve the same sum rate as noisy network coding

for the Gaussian TWRC.

Theorem 15. Compress-forward without binning achieves the same sum rate as noisy

network coding for the Gaussian TWRC if and only if σ2
c1 ≤ σ2

N , where σ2
c1 is defined in

(4.26) and σ2
N is defined in Corollary 5. Otherwise, the sum rate achieved by compress-
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Fig. 4.3 Sum rate for gr1 = g1r = 2, gr2 = g2r = 0.5, g12 = g21 = 0.1.

forward without binning is smaller.

Proof. According to Corollary 5, the sum rate of noisy network coding is maximized when

σ2 = σ2
N . According to Theorem 12, for CF without binning, the constraint on σ2 is

σ2 ≥ σ2
c1 (since we assume σ2

c1 ≥ σ2
c2). Therefore, compress-forward without binning

achieves the same sum rate as noisy network coding if and only if the constraint region

σ2 ≥ σ2
c1 contains σ2

N , which is equivalent to σ2
c1 ≤ σ2

N .

We can apply the above result to the special case of gr1 = g1r, gr2 = g2r, g21 = g12 as

follows.

Corollary 6. If gr1 = g1r, gr2 = g2r, g21 = g12, then compress-forward without binning

always achieves the same sum rate as noisy network coding.

Proof. See Appendix A.7.2.

Figure 4.3 plots the sum rates for the same channel configurations as in Figure 4.1,

which shows the sum rates of CF without binning and noisy network coding are the same,

even though the rate regions are not.

As confirmed in Figures 4.1, 4.2 and 4.3, CF without binning achieves a larger rate

region and sum rate than the original CF scheme in [2] when the channel is asymmetric for

the two users. CF without binning achieves the same rate region as noisy network coding
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when (4.32) is satisfied and achieves the same sum rate for a more relaxed condition.

Furthermore, it has less decoding delay which is only 1 instead of b blocks.
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Chapter 5

Combined Decode-Forward and

Layered Noisy Network Coding

5.1 Problem Statement

We have discussed decode-forward in Chapter 3 and noisy network coding in Chapter 4

for relay channels. Under most channel conditions, these two schemes achieve rate regions

which do not include each other. Therefore, we would like to propose a combined scheme

which can include both of them as special cases.

In [19], Ramalingam and Wang propose a superposition NNC scheme for restricted relay

networks, in which source nodes cannot act as relays, by combining decode-forward and

noisy network coding and show some performance improvement over NNC. Their scheme,

however, does not include DF relaying rate because of no block Markov encoding. We will

first improve this scheme so that it could includes DF relaying rate for the one-way relay

channel.

As we have discussed, there are two existing decode-forward schemes [2] [3] for the two-

way relay channel. In [2], block Markovity is used at the source to obtain a coherent gain

at the cost of reducing power at the relay. In [3], the relay uses its whole power to send

their bin index. We could combine these two decode-forward schemes with an improved

NNC scheme termed ”layered noisy network coding” (LNNC) [18], so that to include the

advantages of all schemes.
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5.2 Combined DF and NNC Scheme for the One-Way Relay

Channel

In this section, we propose a coding scheme combing decode-forward [1] and noisy network

coding [5] for the one-way relay channel. The source splits its message into two parts, a

common and a private message. The common message is different in each block and is

decoded at both the relay and destination as in decode-forward, while the private message

is the same for all blocks and is decoded only at the destination as in noisy network coding.

The source encodes the common message with block Markovity, and then superimposes

the private message on top. The relay decodes the common message at the end of each

block and compresses the rest as in NNC. In the next block, it sends a codeword which

encodes both the compression index and the decoded common message of the previous

block. The destination decodes each common message by forward sliding-window decoding

over two consecutive blocks. Then at the end of all blocks, it decodes the private message

by simultaneous decoding over all blocks. Our proposed scheme includes both DF relaying

and NNC as special cases and outperforms superposition NNC in [19] in that we use block

Markov encoding for the common messages, which provides coherency between source and

relay and improves the transmission rate.

5.2.1 Coding Scheme and Achievable Rate for the DM One-Way Relay

Channel

Theorem 16. 1 The rate R = R10 + R11 is achievable for the one-way relay channel by

combining decode-forward and noisy network coding

R10 ≤ min{I(Yr;U |Ur, Xr), I(U,Ur;Y )}

R11 ≤ min{I(X;Y, Ŷr|U,Ur, Xr), I(X,Xr;Y |U,Ur)− I(Ŷr;Yr|Xr, U, Ur, X, Y )} (5.1)

for some joint distribution that factors as

p(ur)p(u|ur)p(x|u, ur)p(xr|ur)p(y, yr|x, xr)p(ŷr|yr, u, ur, xr). (5.2)

1The result published in [34] contains an error and it should be corrected as in this theorem. See Remark
21 for details.
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Proof. We use a block coding scheme in which each user sends b−1 messages over b blocks

of n symbols each.

1) Codebook generation: Fix a joint distribution as in (5.2). For each block j ∈ [1 : b]:

• Independently generate 2nR10 sequences unr,j(mj−1) ∼
∏n

i=1 p(ur,i), where mj−1 ∈ [1 :

2nR10 ].

• For eachmj−1, independently generate 2nR10 sequences unj (mj|mj−1) ∼
∏n

i=1 p(ui|ur,i),
mj ∈ [1 : 2nR10 ].

• For each (mj−1,mj), independently generate 2nbR11 sequences xnj (m|mj,mj−1) ∼∏n
i=1 p(xi| ui, ur,i), m ∈ [1 : 2nbR11 ].

• For eachmj−1, independently generate 2nR̂ sequences xnr,j(kj−1|mj−1) ∼
∏n

i=1 p(xr,i|ur,i),
kj−1 ∈ [1 : 2nR̂].

• For each (mj−1,mj, kj−1), independently generate 2nR̂ sequences ŷnr,j(kj|kj−1,mj−1,mj) ∼∏n
i=1 p(ŷr,i|xr,i, ur,i, ui), kj ∈ [1 : 2nR̂].

2) Encoding: In block j, the source sends xnj (m|mj,mj−1). Assume that the relay has

successfully found compression index kj−1 and decoded message mj−1 of the previous block,

it then sends xnr,j(kj−1|mj−1).

3) Decoding at the relay: At the end of block j, upon receiving ynr,j, the relay finds a k̂j

and a unique m̂j such that

(unr,j(mj−1), u
n
j (m̂j|mj−1), x

n
r,j(kj−1|mj−1), ŷ

n
r,j(k̂j|kj−1,mj−1, m̂j), y

n
r,j) ∈ T (n)

ε , (5.3)

where T
(n)
ε denotes the strong typical set [11]. By the covering lemma and standard analysis,

Pe → 0 as n→∞ if

R̂ > I(Ŷr;Yr|U,Ur, Xr) (5.4)

R̂ +R10 ≤ I(Yr; Ŷr, U |Ur, Xr). (5.5)

4) Decoding at the destination: At the end of each block j, the destination finds the
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unique m̂j−1 such that

(unj−1(m̂j−1|mj−2), u
n
r,j−1(mj−2), y

n
j−1) ∈ T (n)

ε

and (unr,j(m̂j−1), y
n
j ) ∈ T (n)

ε . (5.6)

Following standard analysis, Pe → 0 as n→∞ if

R10 ≤ I(U ;Y |Ur) + I(Ur;Y ) = I(U,Ur;Y ). (5.7)

At the end of block b, it finds the unique m̂ such that

(unr,j(mj−1), u
n
j (mj|mj−1), x

n
r,j(k̂j−1|mj−1), x

n
j (m̂|mj,mj−1), ŷ

n
r,j(k̂j|k̂j−1,mj−1,mj), y

n
j ) ∈ T (n)

ε

for all j ∈ [1 : b] and some vector k̂j ∈ [1 : 2nR̂]b. As in [5], Pe → 0 as n→∞ if

R11 ≤ min{I1, I2 − R̂}, where (5.8)

I1 = I(X;Y, Ŷr|U,Ur, Xr)

I2 = I(X,Xr;Y |U,Ur) + I(Ŷr;Y,X|Xr, U, Ur). (5.9)

By applying Fourier-Motzkin Elimination to inequalities (5.4)-(5.8), the rate in Theorem

16 is achievable.

Remark 21. As we have mentioned, there is an error in our previously published paper [34]

as follows. When decoding at the destination as in (5.6), we performed the following

decoding rules: at the end of each block j, the destination finds the unique m̂j−1 such that

(unj−1(m̂j−1|mj−2), u
n
r,j−1(mj−2), x

n
r,j−1(kj−2|mj−2), y

n
j−1) ∈ T (n)

ε

and (unr,j(m̂j−1), y
n
j ) ∈ T (n)

ε .

Following standard analysis, Pe → 0 as n→∞ if

R10 ≤ I(U ;Y |Ur, Xr) + I(Ur;Y ). (5.10)

However, this is not correct because the destination cannot use the signal of xr,j−1 when

decoding since it does not know the compression index kj−2. The correct decoding should
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be as in (5.6) which leads to rate constraint in (5.7).

Remark 22. In relay decoding (5.3), we perform joint decoding of both the message and

the compression index. If we use sequential decoding to decode the message first and then

to find the compression index, we still get the same rate constraints as in Theorem 16.

Remark 23. In the Numerical Results part, we show that our proposed combined DF and

NNC scheme achieves the same rate as the backward decoding strategies in [12]. All of

them outperform the original combined DF and CF scheme in [1] under certain channel

parameters.

Remark 24. By setting Ur = Xr, U = X, Ŷr = 0, the rate in Theorem 16 reduces to the

decode-forward relaying rate [1] as

R ≤ min{I(X;Yr|Xr), I(X,Xr;Y )} (5.11)

for some p(xr)p(x|xr)p(y, yr|x, xr). By setting U = Ur = 0, it reduces to the NNC rate [5]

as

R ≤ min{I(X;Y, Ŷr|Xr), I(X,Xr;Y )− I(Ŷr;Yr|Xr, X, Y )}

for some p(x)p(xr)p(y, yr|x, xr)p(ŷr|yr, xr).

Remark 25. The rate constraints in Theorem 16 are similar to those in superposition NNC

(Theorem 1 in [19]), but the code distribution (5.2) is a larger set than that in [19] because

of the joint distribution between (x, u, ur). Hence the achievable rate by the proposed

scheme is higher than that in [19]. Specifically, the scheme in [19] does not include the

decode-forward relaying rate as in (5.11).

5.2.2 Achievable Rate for the Gaussian One-Way Relay Channel

We now evaluate the achievable rate in Theorem 16 for the Gaussian one-way relay channel

as in (2.1).
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Corollary 7. The following rate is achievable for the Gaussian one-way relay channel

R ≤ min

{
C

(
g21β

2
1

g21γ
2
1 + 1

)
, C

(
(gα1 + g2α2)

2 + g2β2
1

g2γ21 + g22β
2
2 + 1

)}
+

C

(
g2γ21 +

g21γ
2
1 · g22β2

2

g2γ21 + g21γ
2
1 + g22β

2
2 + 1

)
(5.12)

where

α2
1 + β2

1 + γ21 ≤ P, α2
2 + β2

2 ≤ P. (5.13)

To achieve the rate in (5.12), we set

U = α1S1 + β1S2, X = U + γ1S3

Xr = α2S1 + β2S4, Ŷr = Yr + Z ′ (5.14)

where S1, S2, S3, S4 ∼ N (0, 1) and Z ′ ∼ N (0, Q) are independent, and the power allocations

satisfy constraint (5.13).

5.3 Combined DF and LNNC for the Two-Way Relay Channel

In this section, we propose a combined scheme based on both decode-forward strategies

as in [2] [3] and layered noisy network coding [18] for the two-way relay channel. Each

user splits its message into three parts: an independent common, a Markov common and a

private message. The independent and Markov common messages are encoded differently

at the source and are different for each block, both are decoded at both the relay and

destination as in decode-forward. The private message is the same for all blocks and is

decoded only at the destination as in noisy network coding. Each user encodes the Markov

common message with block Markov encoding as in [2], then superimposes the independent

common message on top of it without Markovity, and at last superimposes the private

message on top of both. The relay decodes the two common messages and compresses the

rest into two layers: a common and a refinement layer. In the next block, the relay sends a

codeword which encodes the two decoded common messages and two layered compression

indices. Then at the end of each block, each user decodes two common messages of the

other user by sliding-window decoding over two consecutive blocks. At the end of all blocks,
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one user uses the information of the common layer to simultaneously decode the private

message of the other user, while the other user uses the information of both the common

and refinement layers to decode the other user’s private message.

5.3.1 Coding Scheme and Achievable Rate for the DM Two-Way Relay

Channel

Theorem 17. Let R1 denote the set of (R1, R2) as follows:

R1 ≤ min{I5, I12}+ min{I5 − I1, I16}

R2 ≤ min{I6, I14}+ min{I17 − I2, I19}

R1 +R2 ≤ min{min{I5, I12}+ I15 + I18 − I2 + min{I6, I14},

I10 + I15 + I18 − I2,

I10 + min{I15 − I1, I16}+ min{I17 − I2, I19}}

2R1 +R2 ≤ min{I5, I12}+ I15 + I18 − I2 + I10 + min{I15 − I1, I16} (5.15)

for some joint distribution

P ∗ ,p(w1)p(u1|w1)p(v1|w1, u1)p(x1|w1, u1, v1)p(w2)p(u2|w2)p(v2|w2, u2)

p(x2|w2, u2, v2)p(vr|w1, w2)p(ur|vr, w1, w2)p(xr|ur, vr, w1, w2)

p(ŷr, ỹr|yr, xr, ur, vr, w1, w2, u1, v1, u2, v2), (5.16)

where Ij are defined in (5.17)-(5.22), then R1 is achievable if user 2 only uses the common

layer, while user 1 uses both the common and refinement layers. If the two users exchange

decoding layers, they can achieve a corresponding set R2. By time sharing, the convex hull

of R1 ∪R2 is achievable.

Proof. We use a block coding scheme in which each user sends b−1 messages over b blocks

of n symbols each.

1) Codebook generation: Fix a joint distribution P ∗ as in (5.16). Each user l ∈ {1, 2}
splits its message into three parts: ml0,ml1 and ml2. For each j ∈ [1 : b] and l ∈ {1, 2}

• Independently generate 2nRl0 sequences wnl,j(ml0,j−1) ∼
∏n

i=1 p(wl,i), ml0,j−1 ∈ [1 :

2nRl0 ].
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• For eachml0,j−1, independently generate 2nRl0 sequences unl,j(ml0,j|ml0,j−1) ∼
∏n

i=1 p(ul,i|
wl,i), ml0,j ∈ [1 : 2nRl0 ].

• For eachml0,j−1,ml0,j, independently generate 2nRl1 sequences vnl,j(ml1,j|ml0,j,ml0,j−1) ∼∏n
i=1 p(vl,i|ul,i, wl,i), ml1,j ∈ [1 : 2nRl1 ].

• For each ml0,j−1,ml0,j,ml1,j, independently generate 2nbRl2 sequences xnl,j(ml2|ml1,j,

ml0,j,ml0,j−1) ∼
∏n

i=1 p(xl,i|vl,i, ul,i, wl,i), ml2 ∈ [1 : 2nbRl2 ].

• For each (m10,j−1,m20,j−1), independently generate 2n(R11+R21) sequences vnr (K|m10,j−1,

m20,j−1) ∼
∏n

i=1 p(vri|w1,i, w2,i), where K ∈ [1 : 2n(R11+R21)]. Map each pair of

(m11,j−1,m21,j−1) to one K.

• For each vector mj−1 = (m10,j−1,m20,j−1, m11,j−1,m21,j−1), independently generate

2nR̃ sequences unr,j(tj−1|mj−1) ∼
∏n

i=1 p(ur,i|vr,i, w1,i, w2,i), tj−1 ∈ [1 : 2nR̃].

• For each (tj−1,mj−1), independently generate 2nR̂ sequences xnr,j(lj−1|tj−1,mj−1) ∼∏n
i=1 p(xr,i|ur,i, vr,i, w1,i, w2,i), lj−1 ∈ [1 : 2nR̂].

• For each (tj−1,mj−1,mj), independently generate 2nR̃ sequences ỹnr,j(tj|tj−1,mj−1,mj) ∼∏n
i=1 p(ỹr,i| ur,i, vr,i, w1,i, w2,i, u1,i, u2,i, v1,i, v2,i), tj ∈ [1 : 2nR̃].

• For each (tj, tj−1, lj−1,mj−1,mj), independently generate 2nR̂ sequences ŷnr,j(lj|lj−1, tj,
tj−1,mj−1,mj) ∼

∏n
i=1 p(ŷr,i|ỹr,i, xr,i, ur,i, vr,i, w1,i, w2,i, u1,i, u2,i, v1,i, v2,i), tj ∈ [1 :

2nR̃].

2) Encoding: In block j, user l ∈ {1, 2} sends xnl,j(ml2|ml1,j,ml0,j,ml0,j−1).

Let mj = (m10,j,m20,j,m11,j,m21,j). At the end of block j, the relay has decoded

mj−1,mj. Upon receiving ynr,j, it finds an index pair (t̂j, l̂j) such that

(ŷnr,j(l̂j|lj−1, t̂j, tj−1,mj−1,mj), ỹ
n
r,j(t̂j|tj−1,mj−1,mj), x

n
r,j(lj−1|tj−1,mj−1),

unr,j(tj−1|mj−1), w
n
1,j, w

n
2,j, v

n
r,j, u

n
1,j, v

n
1,j, u

n
2,j, v

n
2,j, y

n
r,j) ∈ T (n)

ε .

According to Lemma 1 in [18], the probability that no such (t̂j, l̂j) exists goes to 0 as n→∞
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if

R̃ > I(Ỹr;Xr, Yr|Ur, Vr, U1, V1, U2, V2,W1,W2) , I1 (5.17)

R̃ + R̂ > I(Ỹr;Xr, Yr|Ur, Vr, U1, V1, U2, V2,W1,W2)+

I(Ŷr;Yr|Ỹr, Xr, Ur, Vr, U1, V1, U2, V2,W1,W2) , I2.

The relay then sends xnr,j+1(lj|tj,mj) at block j + 1.

3) Relay decoding: At the end of block j, the relay finds the unique (m̂10,j, m̂20,j, m̂11,j, m̂21,j)

such that

(wn1,j(m10,j−1), u
n
1,j(m̂10,j|m10,j−1), v

n
1,j(m̂11,j|m̂10,j,m10,j−1), w

n
2,j(m20,j−1), u

n
2,j(m̂20,j|m20,j−1),

vn2,j(m̂21,j|m̂20,j,m20,j−1), v
n
r,j(m11,j−1,m21,j−1|m10,j−1,m20,j−1), y

n
r,j) ∈ T (n)

ε .

As in the multiple access channel, Pe → 0 as n→∞ if

R11 ≤ I(V1;Yr|Vr,W1, U1,W2, U2, V2) , I3

R21 ≤ I(V2;Yr|Vr,W2, U2,W1, U1, V1) , I4

R10 +R11 ≤ I(U1, V1;Yr|Vr,W1,W2, U2, V2) , I5

R20 +R21 ≤ I(U2, V2;Yr|Vr,W2,W1, U1, V1) , I6

R11 +R21 ≤ I(V1, V2;Yr|Vr,W1, U1,W2, U2) , I7

R10 +R11 +R21 ≤ I(U1, V1, V2;Yr|Vr,W1,W2, U2) , I8

R20 +R11 +R21 ≤ I(U2, V1, V2;Yr|Vr,W1,W2, U1) , I9

R10 +R20 +R11 +R21 ≤

(U1, V1, U2, V2;Yr|Vr,W1,W2) , I10. (5.18)

4) User decoding: At the end of block j, user 2 finds the unique (m̂10,j−1, m̂11,j−1) such

that

(un1,j−1(m̂10,j−1|m10,j−2), v
n
1,j−1(m̂11,j−1|m̂10,j−1,m10,j−2),

wn1,j−1, w
n
2,j−1, u

n
2,j−1, v

n
2,j−1, x

n
2,j−1, v

n
r,j−1, y

n
2,j−1) ∈ T (n)

ε

and (wn1,j(m̂10,j−1), w
n
2,j, u

n
2,j, v

n
2,j, x

n
2,j, v

n
r,j(m̂11,j−1,m21,j−1|m̂10,j−1,m20,j−1), y

n
2,j) ∈ T (n)

ε .
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The error probability goes to 0 as n→∞ if

R11 ≤ I(V1;Y2|Vr,W1, U1,W2, U2, V2, X2) + I(Vr;Y2|W1,W2, U2, V2, X2) , I11

R10 +R11 ≤ I(U1, V1;Y2|Vr,W1,W2, U2, V2, X2) + I(W1, Vr;Y2|W2, U2, V2, X2)

= I(W1, U1, V1, Vr;Y2|W2, U2, V2, X2) , I12. (5.19)

Similarly, for vanishing-error decoding at user 1

R21 ≤ I(V2;Y1|Vr,W2, U2,W1, U1, V1, X1) + I(Vr;Y1|W2,W1, U1, V1, X1) , I13

R20 +R21 ≤ I(W2, U2, V2, Vr;Y1|W1, U1, V1, X1) , I14. (5.20)

At the end of last block b, user 2 uses one compression layer to find the unique m̂12 such

that

(xn1,j(m̂12|m11,j,m10,j,m10,j−1), v
n
1,j, u

n
1,j, w

n
1,j, x

n
2,j, v

n
2,j, u

n
2,j,

wn2,j, v
n
r,j, u

n
r,j(t̂j−1|mj−1), ỹ

n
r,j(t̂j|t̂j−1,mj−1,mj), y

n
2,j) ∈ T (n)

ε

for all j ∈ [1 : b] and some vector t̂j ∈ [1 : 2nR̃]b. As in [18], Pe → 0 as n→∞ if

R12 + R̃ ≤ I(X1, Ur;Y2|X2,W1, U1, V1,W2, U2, V2, Vr)+

I(Ỹr;X1, X2, Y2|Ur,W1, U1, V1,W2, U2, V2, Vr) , I15 (5.21)

R12 ≤ I(X1; Ỹr, Y2|X2, Ur,W1, U1, V1,W2, U2, V2, Vr) , I16

Using both layers, user 1 finds the unique m̂22 such that

(xn1,j, v
n
1,j, u

n
1,j, w

n
1,j, x

n
2,j(m̂22|m21,j,m20,j,m20,j−1), y

n
1,jv

n
2,j, u

n
2,j, w

n
2,jv

n
r,j, u

n
r,j(t̂j−1|mj−1),

xnr,j(l̂j−1|t̂j−1,mj−1), ỹ
n
r,j(t̂j|t̂j−1,mj−1,mj), ŷ

n
r,j(l̂j|t̂j, l̂j−1, t̂j−1,mj−1,mj)) ∈ T (n)

ε

for all j ∈ [1 : b] and some vectors t̂j ∈ [1 : 2nR̃]b, l̂j ∈ [1 : 2nR̂]b. As in [18], Pe → 0 as
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n→∞ if

R22 + R̃ + R̂ ≤ I(X2, Xr;Y1|X1,W1, U1, V1,W2, U2, V2, Vr)

+ I(Ŷr;X1, X2, Y1|Ỹr, Xr, Ur,W1, U1, V1,W2, U2, V2, Vr)

+ I(Ỹr;X1, X2, Xr, Y2|Ur,W1, U1, V1,W2, U2, V2, Vr) , I17

R22 + R̂ ≤ I(X2, Xr;Y1, Ỹr|X1, Ur,W1, U1, V1,W2, U2, V2, Vr)

+ I(Ŷr;X1, X2, Y1|Ỹr, Xr, Ur,W1, U1, V1,W2, U2, V2, Vr) , I18

R22 ≤ I(X2; Ỹr, Ŷr, Y1|X1, Ur, Xr,W1, U1, V1,W2, U2, V2, Vr)

, I19. (5.22)

By applying Fourier-Motzkin Elimination to inequalities (5.17)-(5.22), the rate region

in Theorem 17 is achievable.

Remark 26. By setting V1 = W2 = U2 = V2 = X2 = Ur = Vr = Ỹr = 0, we obtain the rate

for the one-way channel in Theorem 16 from the region in Theorem 17.

Remark 27. The proposed combined DF-LNNC scheme includes each schemes in [2, 3, 18]

as a special case. Specifically, it reduces to the scheme in [2] by setting U1 = X1, U2 =

X2, Vr = Xr, V1 = V2 = Ur = Ŷr = Ỹr = 0, to the scheme in [3] by setting V1 = X1, V2 =

X2, Vr = Xr,W1 = U1 = W2 = U2 = Ur = Ŷr = Ỹr = 0, and to the scheme in [18] by setting

W1 = U1 = V1 = W2 = U2 = V2 = Vr = 0.

Remark 28. In our proposed scheme, the Markov common messages bring a coherent gain

between the source and the relay, but they require the relay to split its power for each

message because of block Markov superposition coding. For the independent common

messages, the relay uses its whole power to send the bin index of them which can then solely

represent one message when decoding because of side information on the other message at

each destination.

Remark 29. Rate region for the Gaussian TWRC can be obtained by applying Theorem
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Fig. 5.1 Achievable rate comparison for the one-way relay channel with
P = 10, g1 = d−γ/2, g2 = (1− d)−γ/2, g = 1, γ = 3.

17 with the following signaling:

X1 = α1S1 + β1S2 + γ1S3 + δ1S4

X2 = α2S5 + β2S6 + γ2S7 + δ2S8

Xr = α31S1 + α32S5 + γ3S9 + β3S10 + δ3S11

Ŷr = Yr + Ẑr; Ỹr = Ŷr + Z̃r, (5.23)

where the power allocations satisfy

α2
1 + β2

1 + γ21 + δ21 ≤ P, α2
2 + β2

2 + γ22 + δ22 ≤ P,

α2
31 + α2

32 + β2
3 + γ23 + δ23 ≤ P, (5.24)

all Si ∼ N (0, 1) and Ẑr ∼ N (0, Q̂), Z̃r ∼ N (0, Q̃) are independent.

5.4 Numerical Results

We numerically compare the performance of the proposed combined schemes with the

original DF and NNC. Consider the Gaussian channels as in (2.1) and (2.2). Assume all

the nodes are on a straight line. The relay is at a distance d from the source and distance

1 − d from the destination which makes g1 = d−γ/2 and g2 = (1 − d)−γ/2, where γ is the

path loss exponent. Figure 5.1 shows the achievable rate for the one-way relay channel with
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d RU R1 R2 R3 R4 R5 R6

0.72 1.9838 1.7061 1.6845 1.7061 1.7061 1.7061 1.7061

0.73 1.9716 1.6881 1.6908 1.6927 1.6984 1.6984 1.6984

0.74 1.9597 1.6703 1.6971 1.6971 1.7012 1.7012 1.7012

0.75 1.9481 1.6529 1.7033 1.7033 1.7052 1.7052 1.7052

0.76 1.9367 1.6538 1.7094 1.7094 1.7099 1.7099 1.7099

0.78 1.9148 1.6022 1.7210 1.7210 1.7210 1.7210 1.7210

Table 5.1 Comparison of achievable rates for P1 = 5, P2 = 1
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Fig. 5.2 Sum rate for the two-way relay channel with P = 10, gr1 = g1r =
d−γ/2, gr2 = g2r = (1− d)−γ/2, g12 = g21 = 1, γ = 3.

P = 10, γ = 3. The combined DF-NNC scheme supersedes both the DF and NNC schemes.

It can achieve the capacity of the one-way relay channel when the relay is close to either the

source or the destination. Table 5.1 shows the rates for the various schemes, i.e., cut-set

bound (RU), decode-forward (R1), compress-forward (R2), combined DF and CF of Cover

and El Gamal (R3), the SeqBack decoding in [12] (R4), the SimBack decoding strategy

in [12] (R5), the combined DF and NNC (R6). We see that the proposed combined DF and

NNC scheme achieves the same rate as the two backward decoding strategies in [12]. All

of them outperform the generalized combined DF and CF scheme of Cover and El Gamal

in [1] for a certain range of d. Figure 5.2 shows the sum rate for the two-way relay channel

with P = 10, γ = 3. Our proposed scheme achieves larger sum rate than all 3 individual
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Fig. 5.3 Achievable rate region comparison for the two-way relay channel
with P = 3, gr1 = 6, g1r = 2, gr2 = 2, g2r = 3, g12 = 1, g21 = 0.5.

schemes when the relay is close to either user, while reducing to layered NNC when the

relay is close to the middle of the two users. Figure 5.3 shows the achievable rate regions

for the Gaussian TWRC using these 4 schemes. The achievable region of our proposed

scheme encompasses all 3 individual schemes.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we have proposed and analyzed several coding schemes for the one-way, two-

way relay channels and relay networks. Simulation and analysis show that our proposed

bring improvements on existing schemes, such as decode-forward, compress-forward.

In Chapter 3, we have proposed partial decode-forward (PDF) schemes for both full-

and half-duplex two-way relay channels. Such schemes have not been considered for the

full TWRC (with direct link) before. Each user splits its message into 2 parts and the

relay decodes only one. Analysis and simulation both show that when the direct link

is stronger than the user-to-relay link for one user but is weaker for the other, partial

decode-forward in either full- or half-duplex mode can achieve larger rate region than both

pure decode-forward and direct transmission. Thus, unlike in the one-way Gaussian relay

channel, partial decode-forward is beneficial in the two-way relay channel. Furthermore,

PDF involves only 2-part superposition coding and hence is simple to implement in practice.

In Chapter 4, we have analyzed impacts of the 3 new ideas for compress-forward (CF)

in noisy network coding (NNC): no Wyner-Ziv binning, relaxed simultaneous decoding and

message repetition. For the one-way relay channel (single-source single-destination), no

Wyner-Ziv binning alone without message repetition can achieve the NNC rate at shorter

decoding delay. The extra requirement is joint (but not necessarily relaxed) decoding at

the destination of both the message and compression index. However, for multi-source

multi-destination networks such as the two-way relay channel (TWRC), we find that all 3

techniques together is necessary to achieve the NNC rate region. Under certain channel
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conditions, CF without Wyner-Ziv binning and without message repetition can achieve the

same rate region or sum rate as NNC. Deriving these conditions explicitly for the Gaussian

TWRC, we find that the difference in rate regions between CF without binning and NNC

is often small. Results also show that these two schemes achieve the same sum rate for

a majority of channel configurations. Therefore, CF without binning is more useful in

practice because of the short encoding and decoding delay.

In Chapter 5, we have proposed two combined schemes: DF-NNC for the one-way

and DF-LNNC for the two-way relay channels. Both schemes perform message splitting,

block Markovity encoding, superposition coding and noisy network coding. Each combined

scheme encompasses all respective individual schemes (DF and NNC or LNNC) and strictly

outperforms superposition NNC in [19]. These are initial results for combining decode-

forward and noisy network coding for a multi-source network.

6.2 Future Work

We have proposed combined decode-forward and noisy network coding scheme for the one-

way and two-way relay channels. One possible generalization of this work is to extend the

combined scheme to general multi-source network where each source also acts as a relay.

When generalizing decode-forward to a relay network, a node can decode the message

from other nodes after one block or multiple blocks. Different choices for each node brings

different achievable rate region. The union of all these achievable rate regions is the final

rate region. The difficulty is to find a general way to denote the decoding order and analyze

the achievable for fixed decoding order.

We have proposed a partial decode-forward scheme for both full- and half-duplex two-

way relay channels. For the full-duplex channel, we are proposing a more general partial

decode-forward scheme which combined both block Markov decode-forward and indepen-

dent decode-forward scheme. We have analyzed the channel conditions for some special

cases under which the combined scheme reduces to a single scheme. For the half-duplex

channel, we are proposing a 6-phase partial decode-forward scheme. This scheme includes

the 4-phase decode-forward scheme as special case. We will have more analysis on this

scheme in the future.
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Appendix A

Proofs

A.1 Proof of Theorem 4

We prove the first case in Theorem 4. The proofs for other cases are obvious which are

omitted here. According to symmetric, we only need to consider the first part in case 1

which is g2r1 > g221 + min{g221g2r2P, g22r}, g212 > g2r2. This is equivalent to any one of the

following cases is satisfied:

case 1 : C

(
g2r1P

g2r2P + 1

)
> C(g221P ) (A.1)

case 2 : C(g2r1P ) > C(g221P + g22rP ) (A.2)

We now show that for any of the above two cases, partial decode-forward can achieve rates

outside the the time-shard region of decode-forward and direct transmission.

Case 1: C
(

g2r1P

g2r2P+1

)
> C(g221P )

We first present an example satisfying the condition of case 1 as shown in Figure A.1.

For point X, Let (R1(X), R2(X)) denote its coordinate. The coordinate of point D is

(R1(D), R2(D)) = (C(g221P ), C(g212P )), which is achieved by direct transmission. With

decode-forward scheme, we can achieve point A with R2(A) = C(g2r2). Since g212 > g2r2,

we have R2(D) > R2(A). Now for the partial decode-forward scheme, set α = 1, β = 0 in
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(3.5), we have

R1 ≤ min

{
C

(
g2r1P

g2r1P + 1

)
, C(g221P + g22rP )

}
R2 ≤ min{C(g212P ), C(g212P + g21rP )} = C(g212P )

R1 +R2 ≤ C

(
g2r1P

g2r2P + 1

)
+ C(g212P ). (A.3)

Therefore, partial decode-forward can achieve point C with coordinate

(R1(C), R2(C)) =
(

min
{
C
(

g2r1P

g2r1P+1

)
, C(g221P + g22rP )

}
, C(g212P )

)
. Since C

(
g2r1P

g2r1P+1

)
>

C(g221P ) and C(g221P +g22rP ) > C(g221P ), we have R1(C) > R1(D). Also note that R2(C) =

R2(D) > R2(A). Therefore, point C, achieved by partial decode-forward, is outside the

time-shard region of decode-forward and direct transmission.

Case 2: C(g2r1P ) > C(g221P + g22rP )

We also present an example satisfying the condition of case 2 as shown in Figure A.2.

We show that in this case partial decode-forward can achieve point E which is outside the

time-shared region of decode-forward and direct transmission. Let’s assume

C

(
g2r1P

g2r2P + 1

)
< C(g221P ); (A.4)
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otherwise, it will come back to case 1. Define the following items:

I1(β) = C

(
g2r1P

g2r2β̄P + 1

)
I2(β) = C

(
g2r2βP

g2r2β̄P + 1

)
+ C(g212β̄P )

I3(β) = C

(
g2r1P + g2r2βP

g2r2β̄P + 1

)
+ C(g212β̄P ) (A.5)

We first show some properties about these three functions. Firstly, for β ∈ [0, 1], we

have

I2(β) = C

(
g2r2βP

g2r2β̄P + 1

)
+ C(g212β̄P )

=
1

2
log

(g2r2P + 1)(g212β̄P + 1)

g2r2β̄P + 1

Since g212 > g2r2, I2(β) is decreasing with the increasing of β. Therefore, I2(β) ≤ I2(0) =

C(g212P ) < C(g212P + g21rP ) for β ∈ [0, 1]. Similarly, I3(β) is decreasing with the increasing

of β for β ∈ [0, 1]. Therefore, I3(β) ≥ I3(1) for β ∈ [0, 1].
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Secondly, for β ∈ [0, 1],

I3(β)− I2(β) = C

(
g2r1P + g2r2βP

g2r2β̄P + 1

)
− C

(
g2r2βP

g2r2β̄P + 1

)
=

1

2
log

g2r1P + g2r2P + 1

g2r2P + 1

= C

(
g2r1P

g2r2P + 1

)
(a)
< C(g221P )

< C(g221P + g22rP ).

where (a) follows from (A.4).

Thirdly, let I1(β) ≥ C(g221P + g22rP ), we have

β ≥ 1 +
1

g2r2P

(
1− g2r1

g221 + g22r

)
, β∗ (A.6)

We can show that β∗ ∈ (0, 1).

Now, the rate region in (3.6) achieved by decode-forward can be written as

R1 ≤ min
{
I1(1), C(g221P + g22rP )

}
= C(g221P + g22rP )

R2 ≤ min
{
I2(1), C(g212P + g21rP )

}
= I2(1)

R1 +R2 ≤ I3(1). (A.7)

According to the second property, I3(1) < I2(1) + C(g221P + g22rP ). Therefore, a corner

point B with coordinate (R1(B), R2(B)) = (C(g221P + g22rP ), I3(1) − C(g221P + g22rP )) can

be achieved by decode-forward.

Let α = 1, β = β∗, the rate region in (3.5) achieved by partial decode-forward can be

written as

R1 ≤ min
{
I1(β

∗), C(g221P + g22rP )
}

= C(g221P + g22rP )

R2 ≤ min
{
I2(β

∗), C(g212P + g21rP )
}

= I2(β
∗)

R1 +R2 ≤ I3(β
∗). (A.8)
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According to the second property, I3(β
∗) < I2(β

∗) + C(g221P + g22rP ). Therefore, a corner

point E with coordinate (R1(E), R2(E)) = (C(g221P + g22rP ), I3(β
∗)−C(g221P + g22rP )) can

be achieved by partial decode-forward. Comparing point B with point E, we see that

R1(B) = R1(E), R1(B) < R1(E) with first property. Therefore, point E, achieved by

the partial decode-forward, is outside the time-shard region of decode-forward and direct

transmission.

A.2 Proof of Theorem 6

Assume without loss of generality that mj = 1 and kj−1 = kj = 1. First define the following

two events:

E ′1j(kj) =
{

(xnr (kj), y
n(j + 1)) ∈ T (n)

ε

}
E ′2j(mj, kj) =

{
(xn(mj), x

n
r (1), ŷnr (kj|1), yn(j)) ∈ T (n)

ε

}
.

Then the decoder makes an error only if one or more of the following events occur:

E1j =
{

(ŷnr (kj|1), ynr (j), xnr (1)) /∈ T (n)
ε for all kj ∈ [1 : 2nRr ]

}
E2j =

{
(xnr (1), yn(j + 1)) /∈ T (n)

ε or (xn(1), xnr (1), ŷnr (1|1), yn(j)) /∈ T (n)
ε

}
E3j =

{
E ′1j(kj) and E ′2j(1, kj) for some kj 6= 1

}
(A.9)

E4j =
{
E ′1j(1) and E ′2j(mj, 1) for some mj 6= 1

}
E5j =

{
E ′1j(kj) and E ′2j(mj, kj) for some mj 6= 1, kj 6= 1

}
.

Thus, the probability of error is bounded as

P{m̂j 6= 1, k̂j 6= 1} ≤ P (E1j) + P (E2j ∩ Ec1j) + P (E3j) + P (E4j) + P (E5j).

By the covering lemma [11], P (E1j)→ 0 as n→∞, if

Rr > I(Ŷr;Yr|Xr). (A.10)

By the conditional typicality lemma [36], the second term P (E2j ∩ Ec1j)→ 0 as n→∞.

For the rest of the error events, the decoded joint distribution for each event is as
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follows.

E ′1j(kj) : p(xr)p(y)

E ′2j(1, kj) : p(x)p(xr)p(ŷr|xr)p(y|x, xr)

E ′2j(mj, 1) : p(x)p(xr)p(y, ŷr|xr)

E ′2j(mj, kj) : p(x)p(xr)p(ŷr|xr)p(y|xr),

where mj 6= 1, kj 6= 1. Using standard joint typicality analysis with the above decoded

joint distribution, we can obtain a bound on each error event as follows.

Consider E3j:

P (E3j) = P (∪kj 6=1(E ′1j(kj) ∩ E ′2j(1, kj)))

≤
∑
kj 6=1

P (E ′1j(kj))× P (E ′2j(1, kj)).

Note that if kj 6= 1, then

P (E ′1j(kj)) ≤ 2−n(I(Xr;Y )−δ(ε));

P (E ′2j(1, kj))

=
∑

(x,xr,ŷr,y)∈T (n)
ε

p(x)p(xr)p(ŷr|xr)p(y|x, xr)

≤ 2n(H(X,Xr,Ŷr,Y )−H(X)−H(Xr)−H(Ŷr|Xr)−H(Y |X,Xr)−3δ(ε))

= 2n(H(Ŷr,Y |X,Xr)−H(Ŷr|Xr)−H(Y |X,Xr)−3δ(ε))

= 2n(H(Ŷr|Y,X,Xr)−H(Ŷr|Xr)−3δ(ε))

= 2−n(I(Ŷr;X,Y |Xr)−3δ(ε)).

Therefore

P (E3j) ≤ 2nRr · 2−n(I(Xr;Y )−δ(ε)) · 2−n(I(Ŷr;X,Y |Xr)−3δ(ε))

which tends to zero as n→∞ if

Rr ≤ I(Xr;Y ) + I(Ŷr;X, Y |Xr). (A.11)
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Next consider E4j:

P (E4j) = P (∪mj 6=1(E ′1j(1) ∩ E ′2j(mj, 1)))

≤
∑
mj 6=1

P (E ′2j(mj, 1)).

Note that if mj 6= 1, then

P (E ′2j(mj, 1))

=
∑

(x,xr,ŷr,y)∈T (n)
ε

p(x)p(xr)p(y, ŷr|xr)

≤ 2n(H(X,Xr,Ŷr,Y )−H(X)−H(Xr)−H(Y,Ŷr|Xr)−2δ(ε))

= 2n(H(Ŷr,Y |X,Xr)−H(Y,Ŷr|Xr)−2δ(ε))

= 2−n(I(X;Y,Ŷr|Xr)−2δ(ε)).

Therefore

P (E4j) ≤2nR · 2−n(I(X;Y,Ŷr|Xr)−2δ(ε))

which tends to zero as n→∞ if

R ≤ I(X;Y, Ŷr|Xr). (A.12)

Now consider E5j:

P (E5j) = P (∪mj 6=1 ∪kj 6=1 (E ′1j(kj) ∩ E ′2j(mj, kj)))

≤
∑
mj 6=1

∑
kj 6=1

P (E ′1j(kj))× P (E ′2j(mj, kj)).
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Note that if mj 6= 1 and kj 6= 1, then

P (E ′1j(kj)) ≤ 2−n(I(Xr;Y )−δ(ε));

P (E ′2j(mj, kj))

=
∑

(x,xr,ŷr,y)∈T (n)
ε

p(x)p(xr)p(ŷr|xr)p(y|xr)

≤ 2n(H(X,Xr,Ŷr,Y )−H(X)−H(Xr)−H(Ŷr|Xr)−H(Y |Xr)−3δ(ε))

= 2n(H(Ŷr,Y |X,Xr)−H(Ŷr|Xr)−H(Y |Xr)−3δ(ε))

= 2n(H(Y |X,Xr)+H(Ŷr|Y,X,Xr)−H(Ŷr|Xr)−H(Y |Xr)−3δ(ε))

= 2−n(I(X;Y |Xr)+I(Ŷr;X,Y |Xr)−3δ(ε)).

Therefore

P (E5j) ≤ 2nR · 2nRr · 2−n(I(Xr;Y )−δ(ε)) · 2−n(I(X;Y |Xr)+I(Ŷr;X,Y |Xr)−3δ(ε))

which tends to zero as n→∞ if

R +Rr ≤ I(Xr;Y ) + I(X;Y |Xr) + I(Ŷr;X, Y |Xr)

= I(X,Xr;Y ) + I(Ŷr;X, Y |Xr). (A.13)

Combining the bounds (A.10) and (A.13), we have

R ≤ I(X,Xr;Y ) + I(Ŷr;X, Y |Xr)− I(Ŷr;Yr|Xr)

= I(X,Xr;Y ) + I(Ŷr;X, Y |Xr)− I(Ŷr;Yr, X, Y |Xr)

= I(X,Xr;Y )− I(Ŷr;Yr|X,Xr, Y ). (A.14)

Combining (A.10), (A.11) and (A.12), (A.14), we obtain the result of Theorem 6.
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A.3 Proof of Theorem 8

Assume without loss of generality that m1,j = m1,j+1 = m2,j = 1 and kj−1 = kj = 1. First

define the following two events:

E ′1j(kj) =
{

(xnr (kj), y
n
1 (j + 1), xn1 (1)) ∈ T (n)

ε

}
E ′2j(m2,j, kj) =

{
(xn2 (m2,j), x

n
r (1), ŷnr (kj|1), yn1 (j), xn1 (1)) ∈ T (n)

ε

}
.

Then the decoder makes an error only if one or more of the following events occur:

E1j =
{

(ŷnr (kj|1), ynr (j), xnr (1)) /∈ T (n)
ε for all kj ∈ [1 : 2nRr ]

}
E2j =

{
(xnr (1), yn1 (j + 1), xn1 (1)) /∈ T (n)

ε or (xn2 (1), xnr (1), ŷnr (1|1), yn1 (j), xn1 (1)) /∈ T (n)
ε

}
E3j =

{
E ′1j(kj) and E ′2j(1, kj) for some kj 6= 1

}
(A.15)

E4j =
{
E ′1j(1) and E ′2j(m2,j, 1) for some m2,j 6= 1

}
E5j =

{
E ′1j(kj) and E ′2j(m2,j, kj) for some m2,j 6= 1, kj 6= 1

}
.

Thus, the probability of error is bounded as

P{m̂2,j 6= 1, k̂j 6= 1} ≤P (E1j) + P (E2j ∩ Ec1j) + P (E3j) + P (E4j) + P (E5j).

By the covering lemma, P (E1j)→ 0 as n→∞, if

Rr > I(Ŷr;Yr|Xr). (A.16)

By the conditional typicality lemma, the second term P (E2j ∩ Ec1j)→ 0 as n→∞.

For the rest of the error events, the decoded joint distribution for each event is as

follows.

E ′1j(kj) : p(x1)p(xr)p(y1|x1)

E ′2j(1, kj) : p(x1)p(x2)p(xr)p(ŷr|xr)p(y1|x2, xr, x1)

E ′2j(m2,j, 1) : p(x1)p(x2)p(xr)p(y1, ŷr|xr, x1)

E ′2j(m2,j, kj) : p(x1)p(x2)p(xr)p(ŷr|xr)p(y1|xr, x1), (A.17)
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where m2,j 6= 1, kj 6= 1. Using standard joint typicality analysis with the above decoded

joint distribution, we can obtain a bound on each error event as follows.

Consider E3j:

P (E3j) = P (∪kj 6=1(E ′1j(kj) ∩ E ′2j(1, kj)))

≤
∑
kj 6=1

P (E ′1j(kj))× P (E ′2j(1, kj)).

Note that if kj 6= 1, then

P (E ′1j(kj)) ≤ 2−n(I(Xr;Y1|X1)−δ(ε));

P (E ′2j(1, kj))

=
∑

(x1,x2,xr,ŷr,y1)∈T (n)
ε

p(x1)p(x2)p(xr)p(ŷr|xr)p(y1|x2, xr, x1)

≤ 2n(H(X1,X2,Xr,Ŷr,Y1)−H(X1)−H(X2)−H(Xr)−H(Ŷr|Xr)−H(Y1|X2,Xr,X1)−4δ(ε))

= 2n(H(Ŷr,Y1|X2,Xr,X1)−H(Ŷr|Xr)−H(Y1|X2,Xr,X1)−4δ(ε))

= 2n(H(Ŷr|Y1,X2,Xr,X1)−H(Ŷr|Xr)−4δ(ε))

= 2−n(I(Ŷr;X1,X2,Y1|Xr)−4δ(ε)).

Therefore

P (E3j) ≤ 2nRr · 2−n(I(Xr;Y1|X1)−δ(ε)) · 2−n(I(Ŷr;X1,X2,Y1|Xr)−4δ(ε))

which tends to zero as n→∞ if

Rr ≤ I(Xr;Y1|X1) + I(Ŷr;X1, X2, Y1|Xr). (A.18)

Next consider E4j:

P (E4j) = P (∪m2,j 6=1(E ′1j(1) ∩ E ′2j(m2,j, 1)))

≤
∑
m2,j 6=1

P (E ′2j(m2,j, 1)).
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Note that if m2,j 6= 1, then

P (E ′2j(m2,j, 1))

=
∑

(x1,x2,xr,ŷr,y1)∈T (n)
ε

p(x1)p(x2)p(xr)p(y1, ŷr|xr, x1)

≤ 2n(H(X1,X2,Xr,Ŷr,Y1)−H(X1)−H(X2)−H(Xr)−H(Y1,Ŷr|Xr,X1)−3δ(ε))

= 2n(H(Ŷr,Y1|X2,Xr,X1)−H(Y1,Ŷr|Xr,X1)−3δ(ε))

= 2−n(I(X2;Y1,Ŷr|Xr,X1)−3δ(ε)).

Therefore

P (E4j) ≤2nR2 · 2−n(I(X2;Y1,Ŷr|Xr,X1)−3δ(ε))

which tends to zero as n→∞ if

R2 ≤ I(X2;Y1, Ŷr|Xr, X1). (A.19)

Now consider E5j:

P (E5j) = P (∪m2,j 6=1 ∪kj 6=1 (E ′1j(kj) ∩ E ′2j(m2,j, kj)))

≤
∑
m2,j 6=1

∑
kj 6=1

P (E ′1j(kj))× P (E ′2j(m2,j, kj)).

Note that if m2,j 6= 1 and kj 6= 1, then

P (E ′1j(kj)) ≤ 2−n(I(Xr;Y1|X1)−δ(ε));

P (E ′2j(m2,j, kj))

=
∑

(x1,x2,xr,ŷr,y1)∈T (n)
ε

p(x1)p(x2)p(xr)p(ŷr|xr)p(y1|xr, x1)

≤ 2n(H(X1,X2,Xr,Ŷr,Y1)−H(X1)−H(X2)−H(Xr)−H(Ŷr|Xr)−H(Y1|Xr,X1)−4δ(ε))

= 2n(H(Ŷr,Y1|X2,Xr,X1)−H(Ŷr|Xr)−H(Y1|Xr,X1)−4δ(ε))

= 2n(H(Y1|X2,Xr,X1)+H(Ŷr|Y1,X2,Xr,X1)−H(Ŷr|Xr)−H(Y1|Xr,X1)−4δ(ε))

= 2−n(I(X2;Y1|X1,Xr)+I(Ŷr;X1,X2,Y1|Xr)−4δ(ε)).
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Therefore

P (E5j) ≤ 2nR2 · 2nRr · 2−n(I(Xr;Y1|X1)−δ(ε)) · 2−n(I(X2;Y1|X1,Xr)+I(Ŷr;X1,X2,Y1|Xr)−4δ(ε))

which tends to zero as n→∞ if

R2 +Rr ≤ I(Xr;Y1|X1) + I(X2;Y1|X1, Xr) + I(Ŷr;X1, X2, Y1|Xr)

= I(X2, Xr;Y1|X1) + I(Ŷr;X1, X2, Y1|Xr). (A.20)

Combining the bounds (A.16) and (A.20), we have

R2 ≤ I(X2, Xr;Y1|X1) + I(Ŷr;X1, X2, Y1|Xr)− I(Ŷr;Yr|Xr)

= I(X2, Xr;Y1|X1)− I(Ŷr;Yr|X1, X2, Xr, Y1). (A.21)

Combining the bounds (A.19) and (A.21), we obtain the rate constraint on R2 in Theorem

8. Similar for R1. From (A.16) and (A.18), we obtain constraint (4.8).

A.4 Proof of Theorem 9

We use a block coding scheme in which each user sends b − 1 messages over b blocks of n

symbols each.

Codebook generation

Fix p(x1)p(x2)p(xr)p(ŷr|xr, yr). We randomly and independently generate a codebook for

each block j ∈ [1 : b]

• Independently generate 2nR1 sequences xn1 (m1,j) ∼
∏n

i=1 p(x1i), where m1,j ∈ [1 :

2nR1 ].

• Independently generate 2nR2 sequences xn2 (m2,j) ∼
∏n

i=1 p(x2i), where m2,j ∈ [1 :

2nR2 ].

• Independently generate 2nRr sequences xnr (qj−1) ∼
∏n

i=1 p(xri), where qj−1 ∈ [1 :

2nRr ].



A.4 Proof of Theorem 9 89

• For each qj−1 ∈ [1 : 2nRr ], independently generate 2n(Rr+R
′
r) sequences ŷnr (qj, rj|qj−1) ∼∏n

i=1 p(ŷri|xri(qj−1)). Throw them into 2nRr bins, where qj ∈ [1 : 2nRr ] denotes the

bin index and rj ∈ [1 : 2nR
′
r ] denotes the relative index within a bin.

Encoding

User 1 and user 2 transmits xn1 (m1,j) and xn2 (m2,j) in block j separately. The relay, upon

receiving ynr (j), finds an index pair (qj, rj) such that

(ŷnr (qj, rj|qj−1), ynr (j), xnr (qj−1)) ∈ T (n)
ε .

Assume that such (qj, rj) is found, the relay sends xnr (qj) in block j + 1. By the covering

lemma, the probability that there is no such (qj, rj) tends to 0 as n→∞ if

Rr +R′r > I(Ŷr;Yr|Xr). (A.22)

Decoding

At the end of block j, user 1 determines the unique q̂j−1 such that

(xnr (q̂j−1), y
n
1 (j), xn1 (m1,j)) ∈ T (n)

ε .

Similar for user 2. Both succeed with high probability if

Rr ≤ min{I(Xr;Y1|X1), I(Xr;Y2|X2)}. (A.23)

Then user 1 uses yn1 (j − 1) to determine the unique r̂j−1 such that

(ŷnr (q̂j−1, r̂j−1|q̂j−2), yn1 (j − 1), xnr (q̂j−2), x
n
1 (m1,j−1)) ∈ T (n)

ε .

Similar for user 2. Both succeed with high probability if

R′r ≤ min{I(Ŷr;X1, Y1|Xr), I(Ŷr;X2, Y2|Xr)}. (A.24)
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Finally, user 1 uses both yn1 (j − 1) and ŷnr (j − 1) to determine the unique m̂2,j−1 such that

(xn2 (m̂2,j−1), ŷ
n
r (q̂j−1, r̂j−1|q̂j−2), yn1 (j − 1), xnr (q̂j−2), x

n
1 (m1,j−1)) ∈ T (n)

ε .

Similar for user 2. Both succeed with high probability if

R1 ≤ I(X1;Y2, Ŷr|X2, Xr)

R2 ≤ I(X2;Y1, Ŷr|X1, Xr). (A.25)

The constraint (4.10) comes from combining (A.22), (A.23) and (A.24).

Remark 30. We note an error in the proof in [2]. In [2], when user 1 determines the unique

r̂j−1, it is stated that it succeeds with high probability if

R′r ≤ I(Ŷr;Y1|X1, Xr), (A.26)

which corresponds to step (A.24) in our analysis. However, this is incorrect since the

decoded joint distribution of this error event is p(x1)p(xr)p(ŷr|xr)p(y1|x1, xr). Therefore,

the error probability can be bounded as

P (E) =
∑

(x1,xr,ŷr,y1)∈T (n)
ε

p(x1)p(xr)p(ŷr|xr)p(y1|x1, xr)

≤ 2n(H(X1,Xr,Ŷr,Y1)−H(X1)−H(Xr)−H(Ŷr|Xr)−H(Y1|X1,Xr)−3δ(ε))

= 2−n(I(Ŷr;X1,Y1|Xr)−3δ(ε)),

which tends to zero as as n→∞ if (A.24) is satisfied instead of (A.26).

A.5 Proof of Corollary 1

The codebook generation and encoding is the same as that in Theorem 8. The decoding

rule is changed as follows: in block j + 1, user 1 finds a unique m̂2,j such that

(xn2 (m̂2,j), x
n
r (k̂j−1), ŷ

n
r (k̂j|k̂j−1), yn1 (j), xn1 (m1,j)) ∈ T (n)

ε

and (xnr (k̂j), y
n
1 (j + 1), xn1 (m1,j+1)) ∈ T (n)

ε
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for some pair of (k̂j−1, k̂j). Next we present the error analysis.

Assume without loss of generality that m1,j = m1,j+1 = m2,j = 1 and kj−1 = kj = 1.

First define the following two events:

E ′1j(kj) =
{

(xnr (kj), y
n
1 (j + 1), xn1 (1)) ∈ T (n)

ε

}
E ′2j(m2,j, kj, kj−1) =

{
(xn2 (m2,j), x

n
r (kj−1), ŷ

n
r (kj|kj−1), yn1 (j), xn1 (1)) ∈ T (n)

ε

}
.

Then the decoder makes an error only if one or more of the following events occur:

E1j =
{

(ŷnr (kj|1), ynr (j), xnr (1)) /∈ T (n)
ε for all kj ∈ [1 : 2nRr ]

}
E2j =

{
(xnr (1), yn1 (j + 1), xn1 (1)) /∈ T (n)

ε or (xn2 (1), xnr (1), ŷnr (1|1), yn1 (j), xn1 (1)) /∈ T (n)
ε

}
Ẽ4j =

{
E ′1j(1) and E ′2j(m2,j, 1, 1) for some m2,j 6= 1

}
Ẽ5j =

{
E ′1j(kj) and E ′2j(m2,j, kj, 1) for some m2,j 6= 1, kj 6= 1

}
E6j =

{
E ′1j(1) and E ′2j(m2,j, 1, kj−1) for some m2,j 6= 1, kj−1 6= 1

}
E7j =

{
E ′1j(kj) and E ′2j(m2,j, kj, kj−1) for some m2,j 6= 1, kj 6= 1, kj−1 6= 1

}
,

where E1j, E2j are the same as in (A.15) in the proof of Theorem 8 (Appendix A.3); E3j in

(A.15) is not an error here. Ẽ4j and Ẽ5j are similar to E4j and E5j in (A.15). E6j and E7j
are new error events.

The probability of error is bounded as

P{m̂2,j 6= 1} ≤ P (E1j) + P (E2j ∩ Ec1j) + P (Ẽ4j) + P (Ẽ5j) + P (E6j) + P (E7j).

Similar to the proof of Theorem 8 in Appendix A.3, by the covering lemma, P (E1j)→ 0 as

n→∞, if

Rr > I(Ŷr;Yr|Xr). (A.27)

By the conditional typicality lemma, the second term P (E2j ∩ Ec1j)→ 0 as n→∞.

By the packing lemma, P (Ẽ4j)→ 0 as n→∞ if

R2 ≤ I(X2;Y1, Ŷr|Xr, X1). (A.28)
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Similarly, P (Ẽ5j)→ 0 as n→∞ if

R2 +Rr ≤ I(X2, Xr;Y1|X1) + I(Ŷr;X1, X2, Y1|Xr). (A.29)

For the new error events E6j and E7j, the decoded joint distributions are as follows.

E ′2j(m2,j, 1, kj−1) : p(x1)p(x2)p(xr)p(ŷr|xr)p(y1|x1)

E ′2j(m2,j, kj, kj−1) : p(x1)p(x2)p(xr)p(ŷr|xr)p(y1|x1), (A.30)

where m2,j 6= 1, kj 6= 1, kj−1 6= 1. Using standard joint typicality analysis, we can obtain a

bound on each error event as follows. P (E6j)→ 0 as n→∞ if

R2 +Rr ≤ I(X2, Xr;Y1|X1) + I(Ŷr;X1, X2, Y1|Xr). (A.31)

P (E7j)→ 0 as n→∞ if

R2 + 2Rr ≤ I(Xr;Y1|X1) + I(X2, Xr;Y1|X1) + I(Ŷr;X1, X2, Y1|Xr). (A.32)

Combining the above inequalities, we obtain the rate region in Corollary 1. Compared to

the rate region of noisy network coding in (4.13), the only new constraint is (A.32), which

occurs when both compression indices are wrong in addition to a wrong message.

A.6 Proof of Corollary 2

Assume without loss of generality that m1,j = m1,j+1 = m2,j = 1 and k2j−2 = k2j−1 = k2j =

1. First define the following three events:

E ′1j(k2j) =
{

(xnr (k2j), y
n
1 (2j + 1), xn1,2j+1(1)) ∈ T (n)

ε

}
E ′2j(m2,j, k2j, k2j−1) =

{
(xn2,2j(m2,j), x

n
r (k2j−1), ŷ

n
r (k2j|k2j−1), yn1 (2j), xn1,2j(1)) ∈ T (n)

ε

}
E ′3j(m2,j, k2j−1, k2j−2) =

{
(xn2,2j−1(m2,j), x

n
r (k2j−2), ŷ

n
r (k2j−1|k2j−2), yn1 (2j − 1), xn1,2j−1(1)) ∈ T (n)

ε

}
.
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Then the decoder makes an error only if one or more of the following events occur:

E1j =
{

(ŷnr (kj|1), ynr (j), xnr (1)) /∈ T (n)
ε for all kj ∈ [1 : 2nRr ]

}
E2j =

{
(xnr (1), yn1 (2j + 1), xn1,2j+1(1)) /∈ T (n)

ε or

(xn2,2j(1), xnr (1), ŷnr (1|1), yn1 (2j), xn1,2j(1)) /∈ T (n)
ε or

(xn2,2j−1(1), xnr (1), ŷnr (1|1), yn1 (2j − 1), xn1,2j−1(1)) /∈ T (n)
ε

}
Er3j =

{
E ′1j(1), E ′2j(m2,j, 1, 1) and E ′3j(m2,j, 1, 1) for some m2,j 6= 1

}
Er4j =

{
E ′1j(1), E ′2j(m2,j, 1, 1) and E ′3j(m2,j, 1, k2j−2) for some m2,j 6= 1, k2j−2 6= 1

}
Er5j =

{
E ′1j(1), E ′2j(m2,j, 1, k2j−1) and E ′3j(m2,j, k2j−1, 1) for some m2,j 6= 1, k2j−1 6= 1

}
Er6j =

{
E ′1j(k2j), E ′2j(m2,j, k2j, 1) and E ′3j(m2,j, 1, 1) for some m2,j 6= 1, k2j 6= 1

}
Er7j =

{
E ′1j(k2j), E ′2j(m2,j, k2j, k2j−1) and E ′3j(m2,j, k2j−1, 1) for some m2,j 6= 1, k2j 6= 1,

k2j−1 6= 1
}

Er8j =
{
E ′1j(k2j), E ′2j(m2,j, k2j, 1) and E ′3j(m2,j, 1, k2j−2) for some m2,j 6= 1, k2j 6= 1, k2j−2 6= 1

}
Er9j =

{
E ′1j(1), E ′2j(m2,j, 1, k2j−1) and E ′3j(m2,j, k2j−1, k2j−2) for some m2,j 6= 1, k2j−1 6= 1,

k2j−2 6= 1
}

Er10j =
{
E ′1j(k2j), E ′2j(m2,j, k2j, k2j−1) and E ′3j(m2,j, k2j−1, k2j−2)

for some m2,j 6= 1, k2j 6= 1, k2j−1 6= 1, k2j−2 6= 1
}

Similar to the proof of Theorem 8 in Appendix A.3, by the covering lemma, P (E1j)→ 0 as

n→∞, if

Rr > I(Ŷr;Yr|Xr). (A.33)

By the conditional typicality lemma, the second term P (E2j ∩ Ec1j)→ 0 as n→∞.

Let symbol ”∗” represent the wrong message or compression index. For l ∈ {2j, 3j},
similar to (A.17) and (A.30), the joint decoded distributions for the rest of the error events
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are as follows.

E ′1j(∗) : p(x1)p(xr)p(y1|x1)

E ′l(∗, 1, 1) : p(x1)p(x2)p(xr)p(y1, ŷr|xr, x1)

E ′l(∗, 1, ∗) : p(x1)p(x2)p(xr)p(ŷr|xr)p(y1|x1)

E ′l(∗, ∗, 1) : p(x1)p(x2)p(xr)p(ŷr|xr)p(y1|xr, x1)

E ′l(∗, ∗, ∗) : p(x1)p(x2)p(xr)p(ŷr|xr)p(y1|x1).

Using standard joint typicality analysis, we can obtain a bound on each error event as

follows.

P (Er3j)→ 0 as n→∞ if

2R2 ≤ 2I(X2;Y1, Ŷr|Xr, X1). (A.34)

P (Er4j)→ 0 as n→∞ if

2R2 +Rr ≤ I(X2;Y1, Ŷr|Xr, X1) + I(X2, Xr;Y1|X1) + I(Ŷr;X1, X2, Y1|Xr). (A.35)

P (Er5j)→ 0 as n→∞ if

2R2 +Rr ≤ I(X2, Xr;Y1|X1) + I(Ŷr;X1, X2, Y1|Xr) + I(X2;Y1|X1, Xr) + I(Ŷr;X1, X2, Y1|Xr).

(A.36)

P (Er6j)→ 0 as n→∞ if

2R2 +Rr ≤ I(X2;Y1, Ŷr|Xr, X1) + I(X2, Xr;Y1|X1) + I(Ŷr;X1, X2, Y1|Xr). (A.37)

P (Er7j)→ 0 as n→∞ if

2R2 + 2Rr ≤ I(Xr;Y1|X1) + I(X2, Xr;Y1|X1)

+ I(Ŷr;X1, X2, Y1|Xr) + I(X2;Y1|X1, Xr) + I(Ŷr;X1, X2, Y1|Xr). (A.38)
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P (Er8j)→ 0 as n→∞ if

2R2 + 2Rr ≤ 2[I(X2, Xr;Y1|X1) + I(Ŷr;X1, X2, Y1|Xr)]. (A.39)

P (Er9j)→ 0 as n→∞ if

2R2 + 2Rr ≤ 2[I(X2, Xr;Y1|X1) + I(Ŷr;X1, X2, Y1|Xr)]. (A.40)

P (Er10j)→ 0 as n→∞ if

2R2 + 3Rr ≤ I(Xr;Y1|X1) + 2[I(X2, Xr;Y1|X1) + I(Ŷr;X1, X2, Y1|Xr)]. (A.41)

Combining the above inequalities, we obtain the rate region in Corollary 2. The extra rate

constraints (4.22c) and (4.22f) come only from combing (A.41) with (A.33). Again we see

the boundary effect when the message and all compression indices are wrong.

A.7 Proofs of Corollary 5 and Corollary 6

A.7.1 Proof of Corollary 5

Our objective is to find the optimal σ2 which maximizes the sum rate

s(σ2) , max
{

0,min{R11(σ
2), R12(σ

2)}
}

+ max
{

0,min{R21(σ
2), R22(σ

2)}
}
.

Recall that we have assumed σ2
e1 ≥ σ2

e2, where σ2
e1, σ

2
e2 are defined in (4.30). Note that both

R11(σ
2), R21(σ

2) are non-increasing and R12(σ
2), R22(σ

2) are non-decreasing. Also,

R11(σ
2
e1) = R12(σ

2
e1)

R21(σ
2
e2) = R22(σ

2
e2).

Therefore, the problem of maximizing s(σ2) is equivalent to

max q(σ2) , max{0, R12(σ
2)}+R21(σ

2)

s.t. σ2 ≤ σ2
e1,

σ2 ≥ σ2
e2. (A.42)
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Note that R12(σ
2
z1) = 0 and R12(σ

2) < 0 for σ2 ∈ (0, σ2
z1), R12(σ

2) > 0 for σ2 ∈ (σ2
z1,∞).

Therefore, the optimization problem in (A.42) can be derived into the following two cases:

Case 1 : σ2
z1 ≤ σ2

e2

In this case, the objective function q(σ2) can be simplified to q(σ2) = R12(σ
2) + R21(σ

2),

which is continuously differentiable for σ2 ∈ [σ2
e2, σ

2
e1]. Thus the optimization problem is

equivalent to

min f(σ2) = −R12(σ
2)−R21(σ

2)

s.t. c1(σ
2) = σ2

e1 − σ2 ≥ 0,

c2(σ
2) = σ2 − σ2

e2 ≥ 0.

Form the Lagrangian as L(σ2, λ1, λ2) = f(σ2) − λ1c1(σ
2) − λ2c2(σ

2). With the KKT

conditions, we have:

∇σ2L(σ2
N1, λ1, λ2) = 0,

σ2
e1 − σ2

N1 ≥ 0,

σ2
N1 − σ2

e2 ≥ 0,

λ1, λ2 ≥ 0,

λ1c1(σ
2
N1) = 0,

λ2c2(σ
2
N1) = 0. (A.43)

By solving the above conditions, the optimal σ2
N1 for this case is characterized as in (4.34).

Case 2 : σ2
z1 > σ2

e2

In this case, the objective function q(σ2) is no longer continuously differentiable for σ2 ∈
[σ2
e2, σ

2
e1]. To solve this problem, we divide this interval into two parts. When σ2 ∈ [σ2

e2, σ
2
z1),

the objective function is simplified to q(σ2) = R21(σ
2) and is maximized at σ2 = σ2

e2. When

σ2 ∈ [σ2
z1, σ

2
e1], the objective function is simplified to q(σ2) = R12(σ

2) + R21(σ
2) and is

continuously differentiable for σ2 ∈ [σ2
z1, σ

2
e1]. With the KKT conditions, the optimal σ2

for this case is characterized as σ2
N2 in (4.35). Combining the two intervals, the optimal σ2

N

for this case can be characterized as in (4.36).
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A.7.2 Proof of Corollary 6

From Corollary 5 and Theorem 15, we have:

If σ2
z1 ≤ σ2

e2, then the two schemes achieve the same sum rate if and only if at least one of

the following three conditions holds:

σ2
c1 ≤ σ2

e2 (A.44)

0 < σ2
c1 ≤ σ2

g (A.45)

σ2
g ≤ 0 (A.46)

For the channel configuration of gr1 = g1r, gr2 = g2r, g21 = g12, we can show that either

(A.45) or (A.46) will hold.

If σ2
z1 > σ2

e2, we can show that R21(σ
2
e2) < R12(σ

2
e1) +R21(σ

2
e1) always holds. Therefore,

according to (4.35) and (4.36), the optimal σ2
N can be characterized as:

if σ2
e1 ≥ σ2

g ≥ 0, σ2
N = σ2

g ;

if σ2
g > σ2

e1 or σ2
g < 0, σ2

N = σ2
e1.

Since either (A.45) or (A.46) holds and σ2
c1 ≤ σ2

e1, we obtain σ2
c1 ≤ σ2

N . According to

Theorem 15, the two schemes then achieve the same sum rate.
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