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Interference and Noise Reduction by
Beamforming in Cognitive Networks

Simon Yiu, Member, IEEE, Mai Vu, Member, IEEE, and Vahid Tarokh, Senior Member, IEEE

Abstract—We consider beamforming in a cognitive network
with multiple primary users and a secondary user sharing the
same spectrum. Each primary and secondary user consists of
a transmitter and a receiver. In particular, we assume that the
secondary transmitter has 𝑁𝑡 antennas and transmits data to
its single-antenna receiver using beamforming. The beamformer
is designed to maximize the cognitive signal-to-interference ratio
(CSIR)1. Using mathematical tools from random matrix theory,
we derive both lower and upper bounds on the average interfer-
ence created by the cognitive transmitter at the primary receivers
and the average CSIR of the cognitive user. We further analyze
and prove the convergence of these two performance measures
asymptotically as the number of antennas 𝑁𝑡 or primary users
𝑁𝑝 increases. Specifically, we show that the average interference
per primary receiver converges to 𝐸[𝑑−𝛼], the expected value of
the path loss in the network, whereas the average CSIR decays as
1/𝑐 when 𝑐 = 𝑁𝑝/𝑁𝑡 → ∞. In the special case of 𝑁𝑡 ≥ 𝑁𝑝, the
lower bound of the average total interference approaches 0 and
the upper bound of the average CSIR approaches 𝑁𝑡𝐸[𝑑−𝛼]/𝜎2

C

where 𝜎2
C is the noise variance at the cognitive receiver.

Index Terms—Cognitive network, beamforming, fading chan-
nels, interference, random matrix theory.

I. INTRODUCTION

THE Federal Communication Commissions (FCC) fre-
quency allocation chart [1] indicates multiple allocations

over all the frequency bands under 3 GHz. The intense
competition for the use of spectrum at frequencies below 3
GHz creates the conception of spectrum shortage. However,
studies by FCC show that the usage of the licensed spectrum is
vastly under-utilized [2]. This motivates research in cognitive
networks for the opportunistic use of the spectrum.

A cognitive network usually consists of the primary users
who have the legacy priority access to the spectrum and the
secondary users who use the spectrum only if communication
does not create significant interference to the licensed primary
users. Therefore, the unlicensed secondary users often employ
cognitive radios for transmission to ensure non-interfering
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1The CSIR is defined as the ratio of the desired signal at the cognitive

receiver to the total interference caused to all primary receivers plus the
noise at the cognitive receiver. Please refer to (17) for a formal mathematical
definition.

coexistence with the primary users [3]. This can be achieved
in several ways as discussed in [4] and references therein. For
example, the cognitive user can transmit concurrently with
the primary users under an enforced spectral mask. Another
strategy is to have the cognitive users monitor the spectrum
and access it when an unused slot is detected.

Beamforming is a well-known spatial filtering technique
which can be used for either directed transmission or reception
of energy in the presence of noise and interference [5].
In multiple-antenna systems, beamforming exploits channel
knowledge at the transmitter to maximize the signal-to-noise
ratio (SNR) at the receiver by transmitting in the direction
of the eigenvector corresponding to the largest eigenvalue of
the channel [6]. Beamforming can also be used in the uplink
or downlink of multiuser systems to maximize the signal-to-
interference-plus-noise ratio (SINR) of a particular user [7].

In this paper, we study the effect of beamforming in cogni-
tive networks, in which the primary users and the secondary
receiver are uniformly distributed in a circular disc. The
secondary transmitter located at the center of the disc is
allowed to transmit concurrently with the primary transmitters
(cf. Fig. 1). To minimize the interference caused to the primary
receivers, the secondary transmitter is equipped with multiple
antennas and employs beamforming for transmission. The
beamforming vector the cognitive transmitter is designed such
that it maximizes the desired signal power at its corresponding
receiver while minimizing i) the noise at that receiver and
ii) the total interference caused to all primary receivers. The
ratio of the received signal power to the interference plus
noise is referred to as the cognitive signal-to-interference ratio
(CSIR). Since increasing the number of antennas improves the
spatial directivity of signal energy, one would then expect a
higher average CSIR and a lower average interference. On
the other hand, with constant number of antennas, increasing
the number of primary users in the network has the opposite
effect. Therefore, there is an interesting trade-off between
these parameters.

We investigate this trade-off by studying the average CSIR
of the cognitive user and the average interference created
at all primary receivers. In particular, by employing some
known results in random matrix theory, we provide analytical
bounds for these two performance measures. We prove that
the average interference per primary receiver converges to
𝐸[𝑑−𝛼], the average path loss of the network. The average
CSIR of each cognitive user pair, on the other hand, decays
as 1/𝑐 as 𝑐 = 𝑁𝑝/𝑁𝑡 → ∞, where 𝑁𝑝 and 𝑁𝑡 denote the
number of primary receivers and the number of beamforming
antennas at each cognitive transmitter, respectively. In the
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special case of 𝑁𝑡 ≥ 𝑁𝑝, the lower bound of the average
total interference approaches 0 and the upper bound of the
average CSIR approaches 𝑁𝑡𝐸[𝑑

−𝛼]/𝜎2C where 𝜎2C is the
noise variance at the cognitive receiver. This implies that we
can potentially create little to no interference to the primary
users by employing more antennas in the cognitive transmitter
than the number of primary receivers in the network.

Organization: This paper is organized as follows. In Section
II, we introduce the system model of the proposed trans-
mission scheme and formulate the beamforming optimization
problem. We review some important results on random matrix
theory in Section IV. In Section V, we study the average total
interference and the average CSIR and derive bounds for these
two terms. In Section VI, we provide some discussions on
the average total interference and the average CSIR for two
special cases where 𝑁𝑝 ≫ 𝑁𝑡 and 𝑁𝑝 ≪ 𝑁𝑡. Finally, we
present simulation and numerical results in Section VII, and
draw some conclusions in Section VIII.

Notation: In this paper, bold upper case and lower case
letters denote matrices and vectors, respectively. [⋅]𝐻 , 𝐸[⋅],
𝛿(⋅), 𝑗 ≜ √−1, ∣ ⋅ ∣, ln(⋅), Im(⋅), ℝ+, ⇔, and diag{𝒙} denote
Hermitian transposition, statistical expectation, the Dirac delta
function, the imaginary unit, the absolute value of a scaler, the
natural logarithm, the imaginary part of a complex number, the
set of non-negative real number, mathematical equivalence,
and a diagonal matrix with the elements of 𝒙 in its main
diagonal, respectively. In addition, 𝑰𝑁 , [𝑿]𝑖,𝑗 , 𝜆min(𝑿), and
𝜆max(𝑿) refer to the 𝑁 × 𝑁 identity matrix, the element
in row 𝑖 and column 𝑗 of matrix 𝑿 , and the minimum and
maximum eigenvalue of matrix 𝑿 , respectively.

II. NETWORK AND CHANNEL MODELS

A. Network Model

Consider a cognitive network with 𝑁𝑝 primary users and a
single cognitive (secondary) user. Each primary user consists
of a transmitter P𝑖

T and a receiver P𝑖
R, 1 ≤ 𝑖 ≤ 𝑁𝑝. Likewise,

the cognitive user has a transmitter CT and a receiver CR.
The primary users and the secondary receiver are uniformly
distributed in a circular disc with radius 𝑅 whereas the
secondary transmitter is located at the center of the disc.
Furthermore, we assume that each receiver (either primary or
secondary) has a protected radius of 𝜖 > 0 without any other
interfering transmitter inside. This assumption inhibits infinite
interference at any receiver. Fig. 1 shows an example of the
network under consideration.

In this paper, we consider the interference at the primary
receivers created by the cognitive transmitter. The average total
interference created by the cognitive transmitter CT is defined
as

𝐸[I] = 𝐸

⎡
⎣ 𝑁𝑝∑

𝑖=1

∣∣Interference at P𝑖
R

∣∣2
⎤
⎦ , (1)

and the average CSIR of the cognitive user pair CT-CR is
defined as2

𝐸[CSIR] = 𝐸

[
∣Desired signal at CR∣2

I + 𝜎2C

]
, (2)

2The mathematical definition of I and CSIR will be formally given in (15)
and (17), respectively.

where the expectation is taken over the spatial distribution of
CR and P𝑖

R, ∀ 𝑖. In (2), 𝜎2C represents the noise variance at
CR

3.

ε

R CT
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Fig. 1. A typical network with 𝑁𝑝 = 20.

B. Channel and Signal Models

We assume that the cognitive transmitter CT is equipped
with 𝑁𝑡 uncorrelated antennas whereas the cognitive receiver
CR and the primary receivers P𝑖

R, 1 ≤ 𝑖 ≤ 𝑁𝑝 are equipped
with only a single antenna4. Denote the 𝑁𝑡×1 channel vector
from CT to P𝑖

R as 𝒉𝑖 and from CT to CR as 𝒈. The elements
of 𝒉𝑖 and 𝒈 are modeled as

ℎ𝑛𝑖 =
1

𝑑
𝛼/2
𝑖

ℎ̃𝑛𝑖 , 1 ≤ 𝑖 ≤ 𝑁𝑝, 1 ≤ 𝑛 ≤ 𝑁𝑡, (3)

and
𝑔𝑛 =

1

𝑑𝛼/2
𝑔𝑛, 1 ≤ 𝑛 ≤ 𝑁𝑡, (4)

respectively, where 𝛼 ≥ 2 is the path loss exponent and ℎ̃𝑛𝑖
and 𝑔𝑛 are independent and identically distributed (i.i.d.) zero-
mean complex Gaussian random variables with unit variance
(Rayleigh fading). The distances 𝑑𝑖 and 𝑑 are i.i.d. random
variables which represent the distance from CT to P𝑖

R and to
CR, respectively. By the receiver-protected radius assumption,
𝑑, 𝑑𝑖 > 𝜖. Finally, in order to provide theoretical bounds for
the considered network, it is assumed that CT has global
channel state information (CSI) of the network, i.e., complete
knowledge of 𝒉𝑖 and 𝒈.

The cognitive transmitter CT employs a beamforming vec-
tor 𝒘 with dimension 𝑁𝑡 × 1 for transmission of its data
symbol 𝑥. The corresponding received signal at CR and P𝑖

R

are given by

𝑟C = 𝒘𝐻𝒈𝑥+ 𝑛C and 𝑟𝑖P = 𝒘𝐻𝒉𝑖𝑥+ 𝑛𝑖, (5)

respectively. The noise terms 𝑛C and 𝑛𝑖 in (5) are modeled
as i.i.d. zero-mean complex Gaussian random variables with
variance 𝜎2C and 𝜎2𝑖 , respectively. Finally, we impose an energy
constraint on the beamforming vector,

𝒘𝐻𝒘 = 1. (6)

3We note that the primary and secondary users share the same frequency
and therefore, the primary transmitters would cause interference to the
secondary receiver when they transmit. This interference is a constant that
is independent of the beamformer 𝒘 and therefore, can be also absorbed into
𝜎2
𝐶 .
4Note that for the problem under consideration, the number of antennas at

P𝑖
T is not important, cf. (1) and (2).
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C. Beamforming Formulation

We assume that the data symbols 𝑥 in (5) are i.i.d. taken
from an 𝑀 -ary symbol alphabet. Therefore, the instantaneous
total interference created by CT is given by

I =

𝑁𝑝∑
𝑖=1

∣∣𝒘𝐻𝒉𝑖𝑥
∣∣2

=

𝑁𝑝∑
𝑖=1

𝒘𝐻𝒉𝑖𝒉
𝐻
𝑖 𝒘 = 𝒘𝐻𝑯𝑻𝑯𝐻𝒘 = 𝒘𝐻𝑹𝒘, (7)

where [𝑯]𝑛,𝑖 = ℎ̃
𝑛
𝑖 ,

𝑻 = diag{𝑑−𝛼
1 , . . . , 𝑑−𝛼

𝑁𝑝
}, (8)

and 𝑹 ≜ 𝑯𝑻𝑯𝐻 . We define the instantaneous CSIR of the
cognitive user pair CT-CR as

CSIR =
∣𝑟C∣2∑𝑁𝑝

𝑖=1

∣∣𝑟𝑖P∣∣2 + 𝜎2C =
𝒘𝐻𝑮𝒘

𝒘𝐻𝑹𝒘 + 𝜎2C

=
𝒘𝐻𝑮𝒘

𝒘𝐻(𝑹+ 𝜎2C𝑰𝑁𝑡)𝒘
, (9)

where the definition 𝑮 ≜ 𝒈𝒈𝐻 is used and the third equality
comes from the energy constraint of the beamforming vector,
cf. (6). The maximum CSIR beamformer can now be obtained
formally from the following optimization problem

𝒘opt = argmax
𝒘𝐻𝒘=1

{CSIR} . (10)

The optimal solution to the above optimization problem is the
eigenvector corresponding to the maximum eigenvalue of the
following generalized eigenvalue problem [7]

𝑮𝒘 = 𝜆(𝑹+𝜎2C𝑰𝑁𝑡)𝒘 ⇔ (𝑹+𝜎2C𝑰𝑁𝑡)
−1𝑮𝒘 = 𝜆𝒘. (11)

For 𝑁𝑝 < 𝑁𝑡, the matrix 𝑹 is rank deficient and therefore,
not invertible. However, (𝑹+𝜎2C𝑰𝑁𝑡) is always invertible for
𝜎2C ∕= 0 regardless of the values of 𝑁𝑡 and 𝑁𝑝. We also note
that the above optimization problem (18) is closely related
to the uplink and downlink beamforming problem considered
in [7]. Finally, with the beamforming vector in (18), the
instantaneous CSIR in (17) becomes

CSIR = 𝜆max{(𝑹+ 𝜎2C𝑰𝑁𝑡)
−1𝑮}, (12)

and the corresponding instantaneous total interference in (15)
becomes

I = 𝒘𝐻
opt𝑹𝒘opt. (13)

Since 𝑮 is a rank 1 matrix, 𝑹−1𝑮 has only one nonzero
eigenvalue. Finally, by invoking the Rayleigh’s principle [8],
the interference can be bounded by

𝜆min(𝑹) ≤ 𝒘𝐻𝑹𝒘

𝒘𝐻𝒘
≤ 𝜆max(𝑹). (14)

From (14), we can see that it is desirable to compute the
largest and smallest eigenvalues of the matrix 𝑹. Therefore,
before we turn our attention to 𝐸[CSIR] and 𝐸[I] and provide
bounds for these two average performance measures, in the
next section we present some important results on random
matrix theory which are useful in obtaining 𝜆min(𝑹) and
𝜆max(𝑹).

III. BEAMFORMING FORMULATION

We assume that the data symbols 𝑥 in (5) are i.i.d. taken
from an 𝑀 -ary symbol alphabet. Therefore, the instantaneous
total interference created by CT is given by

I =

𝑁𝑝∑
𝑖=1

∣∣𝒘𝐻𝒉𝑖𝑥
∣∣2 =

𝑁𝑝∑
𝑖=1

𝒘𝐻𝒉𝑖𝒉
𝐻
𝑖 𝒘

= 𝒘𝐻𝑯𝑻𝑯𝐻𝒘 = 𝒘𝐻𝑹𝒘, (15)

where [𝑯 ]𝑛,𝑖 = ℎ̃
𝑛
𝑖 ,

𝑻 = diag{𝑑−𝛼
1 , . . . , 𝑑−𝛼

𝑁𝑝
}, (16)

and 𝑹 ≜ 𝑯𝑻𝑯𝐻 . We define the instantaneous SINR of the
cognitive user pair CT-CR as

SINR =
∣𝑟C∣2∑𝑁𝑝

𝑖=1

∣∣𝑟𝑖P∣∣2 + 𝜎2C =
𝒘𝐻𝑮𝒘

𝒘𝐻𝑹𝒘 + 𝜎2C

=
𝒘𝐻𝑮𝒘

𝒘𝐻(𝑹 + 𝜎2C𝑰𝑁𝑡)𝒘
, (17)

where the definition 𝑮 ≜ 𝒈𝒈𝐻 is used and the third equality
comes from the energy constraint of the beamforming vector,
cf. (6). The maximum SINR beamformer can now be obtained
formally from the following optimization problem

𝒘opt = argmax
𝒘𝐻𝒘=1

{SINR} . (18)

The optimal solution to the above optimization problem is the
eigenvector corresponding to the maximum eigenvalue of the
following generalized eigenvalue problem [7]

𝑮𝒘 = 𝜆(𝑹+𝜎2C𝑰𝑁𝑡)𝒘 ⇔ (𝑹+𝜎2C𝑰𝑁𝑡)
−1𝑮𝒘 = 𝜆𝒘. (19)

For 𝑁𝑝 < 𝑁𝑡, the matrix 𝑹 is rank deficient and therefore,
not invertible. However, (𝑹+𝜎2C𝑰𝑁𝑡) is always invertible for
𝜎2C ∕= 0 regardless of the values of 𝑁𝑡 and 𝑁𝑝. We also note
that the above optimization problem (18) is closely related
to the uplink and downlink beamforming problem considered
in [7]. Finally, with the beamforming vector in (18), the
instantaneous SINR in (17) becomes

SINR = 𝜆max{(𝑹+ 𝜎2C𝑰𝑁𝑡)
−1𝑮}, (20)

and the corresponding instantaneous total interference in (15)
becomes

I = 𝒘𝐻
opt𝑹𝒘opt. (21)

Since 𝑮 is a rank 1 matrix, 𝑹−1𝑮 has only one nonzero
eigenvalue. Next, we turn our attention to 𝐸[SINR] and
𝐸[I] and provide bounds for these two average performance
measures.

IV. METHODOLOGIES FOR COMPUTING 𝜆min(𝑹) AND

𝜆max(𝑹)

A. Special Case: 𝑻 = 𝑰𝑁𝑝

Recall that the entries of 𝑯 are i.i.d. Gaussian random
variables with zero mean and unit variance. Therefore, if 𝑻 is
an identity matrix5, the 𝑁𝑡 × 𝑁𝑡 matrix 𝑹̃ ≜ (1/𝑁𝑡)𝑯𝑯𝐻

5This corresponds to the case where all primary receivers have the same
distance from the secondary transmitter.
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is a complex Wishart matrix with 𝑁𝑝 degrees of freedom
and covariance matrix 𝑁𝑝

𝑁𝑡
𝑰 . We note that it is a customary

practice to consider the matrix 𝑹̃ instead of 𝑹 = 𝑯𝑯𝐻 in
the literature. We shall apply the results obtained for 𝑹̃ to 𝑹
in Section V.

The Wishart matrix has been studied extensively in the
literature and in particular, it is known that the empirical
distribution function (e.d.f.) of its eigenvalues defined as

𝐹𝑁𝑡

𝑹̃
(𝑥) =

Number of eigenvalues of 𝑹̃ ≤ 𝑥
𝑁𝑡

(22)

converges almost surely, as 𝑁𝑝/𝑁𝑡 → 𝑐 > 0 as 𝑁𝑡 → ∞, to
a nonrandom distribution function

𝐹𝑹̃(𝑥) = lim𝑁𝑡→∞𝐸[𝐹𝑁𝑡

𝑹̃
(𝑥)] (23)

whose probability density function (p.d.f.) is the famous
Marčenko-Pastur law [9]

𝑑𝐹𝑹̃(𝑥)

𝑑𝑥
= 𝑓𝑐(𝑥) = (1− 𝑐)+𝛿(𝑥) +

√
(𝑥− 𝑎)+(𝑏 − 𝑥)+

2𝜋𝑥
,

(24)
where (𝑧)+ = max(0, 𝑧), 𝑎 = (1−√

𝑐)2, and 𝑏 = (1+
√
𝑐)2.

Clearly, the region of support associated with (24) is simply
the region where 𝑓𝑐(𝑥) ∕= 0. By inspection, we can see that
the support is (

√
𝑐−1)2 ≤ 𝑥 ≤ (

√
𝑐+1)2 plus a mass point at

𝑥 = 0 if 𝑐 < 1. This mass point corresponds to the 𝑁𝑡−𝑁𝑝 >
0 zero eigenvalues when 𝑁𝑡 > 𝑁𝑝. The bulk limit in (24)
suggests 𝜆min(𝑹̃) ≈ (

√
𝑐 − 1)2 and 𝜆max(𝑹̃) ≈ (

√
𝑐 + 1)2.

Indeed, if the entries in 𝑯 has finite fourth moment, it has
been proven in [10] that

lim
𝑁𝑡→∞

𝜆max(𝑹̃) = (
√
𝑐+ 1)2, (25)

whereas [11] has results on the smallest eigenvalue

lim
𝑁𝑡→∞

𝜆min(𝑹̃) = (
√
𝑐− 1)2. (26)

B. 𝑻 with Known Distribution

For 𝑹̃ ≜ 𝑯𝑻𝑯𝐻 where the distribution of 𝑻 is known, an
efficient tool to determine the limiting distribution (and there-
fore, also 𝜆min(𝑹̃) and 𝜆max(𝑹̃)) is the so-called Stieltjes
transform. The Stieltjes transform of a distribution function
𝐹𝑹̃(𝑥) is given by

𝑚𝑹̃(𝑧) =

∫
1

𝑥− 𝑧d𝐹𝑹̃(𝑥), 𝑧 ∈ 𝐷 ≡ {𝑧 ∈ ℂ, Im 𝑧 > 0}.
(27)

The above integral is over the support of 𝐹𝑹̃(𝑥) which will be
on ℝ+ in our case because 𝑹̃ is a positive semidefinite matrix
with all of its eigenvalues being non-negative. The p.d.f. can be
uniquely determined by the Stieltjes-Perron inversion formula
[12]

d𝐹𝑹̃(𝑥)

d𝑥
=

1

𝜋
lim
𝜂→0

Im 𝑚𝑹̃(𝜉 + 𝑗𝜂). (28)

It has been shown in [13] (see also [9]) that if the matrices
𝑯 and 𝑻 satisfy the following four conditions6:

6We note that the original proof in [13], [9] considers matrix in the general
form 𝑩 = 𝑨 + 𝑯𝑻𝑯𝐻 and there are 5 conditions with an additional
condition concerning the requirement of the matrix 𝑨.

1) 𝑯 is a 𝑁𝑡×𝑁𝑝 matrix whose entries are i.i.d. complex
random variables with zero mean and unit variance.

2) 𝑁𝑝 is a function of 𝑁𝑡 with 𝑁𝑝/𝑁𝑡 → 𝑐 > 0 as 𝑁𝑡 →
∞.

3) 𝑻 is a diagonal matrix with real random entries and
the e.d.f. of the entries {𝜏1, . . . , 𝜏𝑁𝑝} converges almost
surely in distribution to a probability distribution func-
tion 𝐹𝑻 (𝜏) as 𝑁𝑡 → ∞.

4) 𝑯 and 𝑻 are independent.

Then, almost surely, the e.d.f. of 𝑹̃ = (1/𝑁𝑡)𝑯𝑻𝑯𝐻 ,
namely 𝐹𝑁𝑡

𝑹̃
(𝑥), converges in distribution to a nonrandom

distribution function 𝐹𝑹̃(𝑥) whose Stieltjes transform 𝑚 =
𝑚𝑹̃(𝑧) is the unique solution to the following equation

𝑚 = −
(
𝑧 − 𝑐

∫
𝜏d𝐹𝑻 (𝜏)

1 + 𝜏𝑚

)−1

. (29)

The above equation has a unique inverse, given by

𝑧𝑹̃(𝑚) = − 1

𝑚
+ 𝑐

∫
𝜏d𝐹𝑻 (𝜏)

1 + 𝜏𝑚
, 𝑚 ∈ 𝑚𝑹̃(𝐷). (30)

To determine the spectral density of 𝑹̃ using (28), 𝑚 =
𝑚𝑹̃(𝑧) in (30) has to be solved explicitly. It is generally
difficult, if not impossible, to obtain an analytical or even
an easy numerical solution for the density of an arbitrary
distribution. However, as shown in [14], much of the analytic
behavior of 𝐹𝑹̃(𝑥) can be inferred from (29)-(30) and in
particular, the methodology presented in [14] can be used
to find the support of 𝐹𝑹̃(𝑥) and can be summarized in the
following four steps:

1) Define 𝐵 ≡ {𝑚 ∈ ℝ : 𝑚 ∕= 0,−𝑚−1 ∈ 𝑆𝑐
𝑻 } where 𝑆𝑐

𝑻

denotes the complement of the support of 𝐹𝑻 (𝜏).
2) Plot (30) on 𝐵, i.e., 𝑧𝑹̃(𝑚), 𝑚 ∈ 𝐵.
3) Delete the range of values where the derivative
𝑧′
𝑹̃
(𝑚) ≥ 0.

4) The remaining range of values is the support of 𝐹𝑹̃(𝑥).

In general, convergence in distribution of 𝐹𝑁𝑡

𝑹̃
(𝑥) does

not imply that the extreme eigenvalues of 𝑹̃, i.e., 𝜆min(𝑹̃)
and 𝜆max(𝑹̃), converge to the minimum and maximum of
the support of 𝐹𝑹̃(𝑥). However, it has been shown that if
the maximum (minimum) eigenvalue of 𝑻 converges to the
largest (smallest) number in the support of 𝐹𝑻 (𝜏), then the
largest (smallest) eigenvalue of 𝑹̃ converges almost surely to
the largest (smallest) number in the support of 𝐹𝑹̃(𝑥) [15].
Clearly, the eigenvalues of 𝑻 are strictly bounded by the
support of 𝐹𝑻 (𝜏), cf. (37). Therefore, 𝜆min(𝑹̃) and 𝜆max(𝑹̃),
converge to the minimum and maximum of the support of
𝐹𝑹̃(𝑥) in our case.

Finally, using the fact that

d𝐹𝑹̃(𝑥)

d𝑥
=

1

𝜋
lim
𝜂→0

Im 𝑚𝑹̃(𝜉 + 𝑗𝜂) =
1

𝜋
Im 𝑚𝑹̃(𝜉), (31)

where

𝑥 = 𝜉 = 𝑧𝑹̃(𝑚) ∈ 𝑆𝑹̃ ∈ ℝ
+, (32)

the density at 𝑥 can be easily obtained by solving the following
equation

𝑧𝑹̃(𝑚) = 𝑥, 𝑚 = 𝑚𝑹̃(𝑥), (33)
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where 𝑧𝑹̃(𝑚) is given in (30). The root 𝑚 can be obtained
by applying the Newton’s method to (33), i.e.,

𝑚𝑖+1 = 𝑚𝑖 − 𝑓(𝑚𝑖)

𝑓 ′(𝑚𝑖)
, (34)

where
𝑓(𝑚𝑖) = 𝑧𝑹̃(𝑚𝑖)− 𝑥, (35)

and 𝑖 is the iteration index.

V. INTERFERENCE AND CSIR ANALYSIS

We derive the upper and lower bounds for the average
interference and average CSIR in this section. These two
measures depend on the path loss matrix 𝑻 in (16). We first
consider 𝐸[I] for 𝑻 = 𝑰𝑁𝑝 , then for 𝑻 in (16), by using the
results presented in the last section.

A. Interference Analysis: Special Case: 𝑻 = 𝑰𝑁𝑝

By making use of (6), (14), (25), and (26) the average total
interference 𝐸[I] = 𝐸[𝒘𝐻𝑹𝒘] can be bounded by [16]

𝑁𝑡(
√
𝑐− 1)2 ≤ 𝐸[I] ≤ 𝑁𝑡(

√
𝑐+ 1)2, 1 ≤ 𝑐 (36)

where the factor 𝑁𝑡 comes from the fact that 𝑹 = 𝑁𝑡𝑹̃. For
𝑐 < 1, there is a mass point at 𝑥 = 0 and the lower limit of
(36) is simply zero.

B. Interference Analysis: 𝑻 with Known Distribution

Recall that 𝑻 is a diagonal matrix whose diagonal entries
are given by [𝑻 ]𝑖,𝑖 = 𝑑−𝛼

𝑖 and 𝑑𝑖 (𝑑𝑖 > 𝜖) is the distance
from CT to P𝑖

R, cf. (16). Therefore, for the problem at hand,
the e.d.f. of the entries in 𝑻 converges to a nonrandom
distribution function, namely, the distribution of the random
variable 𝜏 = 𝑑−𝛼 where 𝑑 is the distance between the center
of a disc with radius 𝑅 and a random location in the disc. It
is straightforward to show that the p.d.f. of 𝜏 is given by

d𝐹𝑻 (𝜏)

d𝜏
=

2

𝛼(𝑅2 − 𝜖2)𝜏 𝛼+2
𝛼

,
1

𝑅𝛼
≤ 𝜏 ≤ 1

𝜖𝛼
. (37)

The limiting e.d.f. of 𝑹̃ and the support of 𝐹𝑹̃(𝑥) can be
obtained by using the method presented in the last section. In
particular, substituting (37) into (30) yields

𝑧𝑹̃(𝑚) = − 1

𝑚
+

2𝑐

𝛼(𝑅2 − 𝜖2)
∫ 𝜖−𝛼

𝑅−𝛼

d𝜏

(1 + 𝜏𝑚)𝜏2/𝛼
. (38)

In general, the above definite integral has no closed-form
solution for 𝛼 > 2 and one has to resort to numerical
integration method such as the Trapezoid rule [17] for the
evaluation of (38). For 𝛼 = 2, (38) can be computed in closed-
form,

𝑧𝑹̃(𝑚) = − 1

𝑚
+

𝑐

𝑅2 − 𝜖2 ln
(
𝑚+𝑅2

𝑚+ 𝜖2

)
, 𝛼 = 2. (39)

Since 𝑆𝑻 = {1/𝑅𝛼 ≤ 𝑚 ≤ 1/𝜖𝛼}, we obtain the domain
𝐵 as 𝐵 = {𝑚 ∈ ℝ : 𝑚 ∕= 0,𝑚 < −𝑅𝛼,𝑚 > −𝜖𝛼}.
As mentioned before, 𝑹̃ is a positive semidefinite matrix
with non-negative eigenvalues and therefore, we only need
to consider the positive range of 𝑧𝑹̃(𝑚), i.e., 𝑧𝑹̃(𝑚) ≥ 0. It
can be shown that 𝑧𝑹̃(𝑚) < 0 holds for 𝑚 ≤ −𝑅𝛼 and 1 < 𝑐

and the proof can be found in Proposition 1 of the Appendix.
We note that for 𝑐 ≤ 1, the smallest eigenvalue of 𝑹 is simply
zero. As a consequence, for our problem, we only have to plot
(38) on 𝐵 ≡ {𝑚 > −𝜖𝛼}. A typical 𝑧𝑹̃(𝑚) plot is shown in
Fig. 2. For this figure, we assume 𝑅 = 10, 𝜖 = 3, 𝛼 = 2,
and 𝑐 = 50. We choose a relatively large 𝜖 in this example for
illustrative purpose only. In our simulations to be presented
in Section VII, we pick 𝜖 = 0.05. In Fig. 2, we can see that
for 𝑚 > −𝜖𝛼, there is a vertical asymptote at 𝑚 = 0 and
there is a local minimum and a local maximum on the left
and on the right of the vertical asymptote, respectively. These
critical points serve as the boundary points of the support of
𝐹𝑹̃(𝑥) highlighted in bold line in the vertical axis given by
𝜆max(𝑹̃) = 𝑧𝑹̃(𝑚1) and 𝜆min(𝑹̃) = 𝑧𝑹̃(𝑚2) where 𝑚1 and
𝑚2 (𝑚1 < 𝑚2) are the two zeros of the derivative of 𝑧𝑹̃(𝑚),

𝑧′
𝑹̃
(𝑚) =

1

𝑚2
− 2𝑐

𝛼(𝑅2 − 𝜖2)
∫ 𝜖−𝛼

𝑅−𝛼

d𝜏

(1 + 𝜏𝑚)2𝜏 (2−𝛼)/𝛼
= 0.

(40)
Once again, for general 𝛼, one has to resort to numerical

method for the evaluation of (40). For 𝛼 = 2, closed-form
expression for (40) is possible and by removing the irrelevant
terms in 𝑧′

𝑹̃
(𝑚), the zeros can be obtained by solving the

following second-order polynomial,

𝑧′
𝑹̃
(𝑚) = 0 ⇔ (1−𝑐)𝑚2+(𝑅2+ 𝜖2)𝑚+ 𝜖2𝑅2 = 0, 𝛼 = 2.

(41)
For Fig. 2, the resulting boundary points obtained are
𝜆max(𝑹̃) = 𝑧𝑹̃(𝑚1) = 1.859 and 𝜆min(𝑹̃) = 𝑧𝑹̃(𝑚2) =
0.9086. The corresponding limiting density d𝐹𝑹̃(𝑥)/d𝑥 and
the limiting e.d.f. 𝐹𝑹̃(𝑥) of Fig. 2 are also shown in Fig. 3.
Finally, by recalling 𝑹 = 𝑁𝑡𝑹̃, the average total interference
𝐸[I] = 𝐸[𝒘𝐻𝑹𝒘] may be bounded by

𝑁𝑡𝑧𝑹̃(𝑚2) ≤ 𝐸[I] ≤ 𝑁𝑡𝑧𝑹̃(𝑚1). (42)

For performance comparison, it is more insightful to con-
sider the average interference per primary receiver defined as
𝐸a[I] ≜ 𝐸[I]/𝑁𝑝,

𝑧𝑹̃(𝑚2)

𝑐
≤ 𝐸a[I] ≜

𝐸[I]
𝑁𝑝

≤ 𝑧𝑹̃(𝑚1)

𝑐
. (43)

Finally, for 𝑐 < 1, there are 𝑁𝑡 − 𝑁𝑝 > 0 zero eigenvalues
and 𝑧𝑹̃(𝑚2) = 0.

C. CSIR Analysis

The upper and lower bounds for 𝐸[CSIR] are readily
available by making use of the results obtained from the
last subsection. In particular, the average CSIR given by
𝐸[CSIR] = 𝐸[𝜆max((𝑹 + 𝜎2C𝑰𝑁𝑡)

−1𝑮)] can be bounded by
(44) given at the top of this page. We use 𝜆(𝑮) to indicate
the only nonzero eigenvalue of 𝑮. In particular, 𝐸[𝜆(𝑮)] is
given by 𝑁𝑡𝐸[𝑑

−𝛼] where

𝐸[𝑑−𝛼] =

∫ 𝜖−𝛼

𝑅−𝛼

2𝜏d𝜏

𝛼(𝑅2 − 𝜖2)𝜏 𝛼+2
𝛼

=

⎧⎨
⎩

ln(𝑅2/𝜖2)

𝑅2 − 𝜖2 , 𝛼 = 2

2(𝜖2−𝛼 −𝑅2−𝛼)

(𝛼 − 2)(𝑅2 − 𝜖2) , 𝛼 > 2
(45)
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𝐸[𝜆min((𝑹 + 𝜎2C𝑰𝑁𝑡)
−1)]𝐸[𝜆(𝑮)] ≤ 𝐸[CSIR] ≤ 𝐸[𝜆max((𝑹 + 𝜎2C𝑰𝑁𝑡)

−1)]𝐸[𝜆(𝑮)]. (44)
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Fig. 2. 𝑧𝑹̃(𝑚) vs. 𝑚 for 𝑅 = 10, 𝜖 = 3, 𝛼 = 2, and 𝑐 = 50. Support
of 𝐹𝑹̃(𝑥) is highlighted in bold line on the vertical axis where 𝑧𝑹̃(𝑚1) =
1.859 and 𝑧𝑹̃(𝑚2) = 0.9086.
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Fig. 3. The limiting density d𝐹𝑹̃(𝑥)/d𝑥 and the limiting e.d.f. 𝐹𝑹̃(𝑥) for
𝑅 = 10, 𝜖 = 3, 𝛼 = 2, and 𝑐 = 50.

is the average path loss of the network. In addition, we note
that

𝐸[𝜆min((𝑹 + 𝜎2C𝑰𝑁𝑡)
−1)] = 𝐸[(𝜆max(𝑹+ 𝜎2C𝑰𝑁𝑡))

−1],

𝐸[𝜆max((𝑹 + 𝜎2C𝑰𝑁𝑡)
−1)] = 𝐸[(𝜆min(𝑹+ 𝜎2C𝑰𝑁𝑡))

−1]. (46)

As mentioned in Section IV-B, 𝜆max(𝑹) and 𝜆min(𝑹) con-
verge almost surely to the maximum and the minimum support
of 𝐹𝑹(𝑥), respectively. Therefore, we arrive at the following
bounds for 𝐸[CSIR]

𝐸[𝑑−𝛼]

𝑧𝑹̃(𝑚1) + 𝜎2C/𝑁𝑡
≤ 𝐸[CSIR] ≤ 𝐸[𝑑−𝛼]

𝑧𝑹̃(𝑚2) + 𝜎2C/𝑁𝑡
. (47)

In the next section, we shall present results on 𝐸a[I] and
𝐸[CSIR] as 𝑐→ 0 and 𝑐→ ∞. They correspond respectively
to the two extreme cases where 𝑁𝑝 ≪ 𝑁𝑡 and 𝑁𝑝 ≫ 𝑁𝑡.
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Fig. 4. Upper and lower bounds of 𝐸a[I] and 𝐸[CSIR] for 1 ≤ 𝑐 ≤ 107.
𝛼 = 2, 𝑅 = 10 and 𝜖 = 0.05.

VI. DISCUSSION

Clearly, 𝐸a[I] and 𝐸[CSIR] are both functions of 𝑅, 𝜖, and
𝑐 = 𝑁𝑝/𝑁𝑡. In this section, we provide some insights on how
the two performance measures scale in the two extreme cases
where i) 𝑁𝑝/𝑁𝑡 → 𝑐 = 0 as 𝑁𝑡 → ∞ and ii) 𝑁𝑝/𝑁𝑡 → 𝑐 =
∞ as 𝑁𝑡 → ∞.

A. 𝑁𝑝/𝑁𝑡 → 𝑐 = 1 as 𝑁𝑡 → ∞
For 𝑐 = 1 (i.e., 𝑁𝑡 = 𝑁𝑝), 𝑧𝑹̃(𝑚) < 0 holds also for

𝑚 > 0 and therefore, the minimum support of 𝐹𝑹̃(𝑥) is zero,
i.e., 𝑧𝑹̃(𝑚2) = 0. The proof is given in Proposition 2 of the
Appendix. For the special case of 𝛼 = 2 and 𝑐 = 1, the same
result can be obtained. In particular, for 𝛼 = 2 and 𝑐 = 1, (41)
reduces to a linear function and has only one root. This root
corresponds to the upper bound of (42) and 𝑧𝑹̃(𝑚2) = 0. As
mentioned in Section III, when 𝑁𝑡 > 𝑁𝑝, 𝑹̃ has 𝑁𝑡−𝑁𝑝 > 0
zero eigenvalues resulting in zero interference. For 𝑁𝑡 = 𝑁𝑝,
the lower bound of the interference is zero. Combining the two
results, the corresponding upper bound of 𝐸[CSIR] becomes

𝐸[CSIR] ≤ 𝑁𝑡𝐸[𝑑
−𝛼]

𝜎2C
, 𝑁𝑝 ≤ 𝑁𝑡, 𝑁𝑡 → ∞. (48)

Clearly, for a noiseless system, i.e., 𝜎2C = 0, it is enough to
use 𝑁𝑡 = 𝑁𝑝 antennas at the cognitive transmitter in order
to achieve 𝐸[CSIR] = ∞. On the other hand, when noise
is presented at the cognitive receiver, it is desirable to use
as many antennas at the cognitive transmitter as possible to
achieve an infinite upper bound for 𝐸[CSIR].

Remark: When 𝑐 → 0, the limiting e.d.f. of 𝑹̃ given by
𝐹𝑹̃(𝑥) approaches the limiting e.d.f. of 𝑻 given by 𝐹𝑻 (𝜏) [14]
and the support of 𝐹𝑹̃(𝑥) approaches the support of 𝐹𝑻 (𝜏),
i.e., 1/𝑅𝛼 ≤ 𝑥 ≤ 1/𝜖𝛼. However, it is important to note that
for 𝑐 < 1, there is a mass point of (1− 𝑐) at 𝑥 = 0 for 𝐹𝑹̃(𝑥)
due to the 𝑁𝑡 −𝑁𝑝 > 0 zero eigenvalues of 𝑹̃ [14].
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B. 𝑁𝑝/𝑁𝑡 → 𝑐 = ∞ as 𝑁𝑡 → ∞
In the other extreme where the number of antennas at the

cognitive transmitter is much less than the number of primary
receivers, i.e., 𝑐→ ∞, we prove in the Appendix (Proposition
3) that the roots of (40) are approximately

𝑚1,𝑚2 ≈ ±
√

(𝜖2(𝛼−1)𝑅2(𝛼−1))(𝑅2 − 𝜖2)(𝛼 − 1)

𝑐(𝑅2(𝛼−1) − 𝜖2(𝛼−1))
. (49)

For 𝛼 = 2, (49) becomes 𝑚1,𝑚2 ≈ ±√
𝜖2𝑅2/𝑐. This is in

accordance with the roots obtained by substituting 𝑐 = ∞ into
(41).

Substituting the resulting root into (38), we show in the
Appendix (Proposition 4) that the maximum and minimum
support of 𝐹𝑹̃(𝑥) given by 𝑧𝑹̃(𝑚1) and 𝑧𝑹̃(𝑚2) converges
to

𝑧𝑹̃(𝑚1) ≈ 𝑧𝑹̃(𝑚2) ≈ 𝑐𝐸[𝑑−𝛼]. (50)

Applying the above result to (43) and (47), immediately, we
see that for 𝑐→ ∞

𝐸a[I] ≈ 𝐸[𝑑−𝛼] (51)

and
𝐸[CSIR] ≈ 1

𝑐+ 𝜎2C/(𝑁𝑡𝐸[𝑑−𝛼])
≈ 1

𝑐
. (52)

The above result can be also obtained by considering 𝐸[I]
directly. By applying the law of large numbers for large
𝑁𝑝, 𝑹 = 𝑯𝑻𝑯𝐻 is approximately a diagonal matrix with
[𝑹]𝑛,𝑛 =

∑𝑁𝑝

𝑖=1 ∣ℎ̃𝑛𝑖 ∣2𝑑−𝛼
𝑖 . Consequently, 1

𝑁𝑝

∑𝑁𝑝

𝑖=1 ∣ℎ̃𝑛𝑖 ∣2𝑑−𝛼
𝑖

approaches its expected value given by 𝐸[𝑑−𝛼] as 𝑁𝑝 → ∞.
(51) and (52) suggest that for very dense network, the average
interference per primary receiver depends only on the average
path loss from CT to P𝑖

R and the average CSIR decreases
exponentially with increasing 𝑁𝑝.

C. An Example

In Fig. (4), we plot the lower and upper bounds in (43) and
(47) for 1 ≤ 𝑐 ≤ 107, 𝛼 = 2, 𝑅 = 10 and 𝜖 = 0.05. For
the 𝐸[CSIR] vs. 𝑐 figure, we consider three cases: i) 𝜎2C=0,
ii) 𝜎2C = 10 with 𝑁𝑡 = 10, and iii) 𝜎2C = 10 with 𝑁𝑡 = 100.
As expected, as 𝑐→ ∞, the lower and upper bounds for both
(43) and (47) for all cases converge according to (51) and
(52), respectively. For small values of 𝑐 (𝑐 < 105), the upper
bound of 𝐸[CSIR] varies for the three considered cases. This
is because for small 𝑐, 𝑧𝑹̃(𝑚2) is relatively small compared
to 𝜎2C/𝑁𝑡 and therefore, 𝐸[CSIR] is dominated by the effect
of noise and 𝑁𝑡, cf. (47). It is also clear from the figure that
increasing 𝑁𝑡 helps improving 𝐸[CSIR]. Finally, we note that
for 𝑐 = 1 and 𝜎2C = 0 , the lower bound of (43) and the upper
bound of (47) are 0 and ∞, respectively.

VII. NUMERICAL AND SIMULATION RESULTS

In this section, we present some numerical and simulation
results. For all results shown we assume 𝛼 = 2, 𝑅 = 10, and
𝜖 = 0.05. Throughout our analysis, we assumed that CT is
located at the center of the disc. For comparison, we will show
also the results where the location of CT is random. In the
Appendix (Proposition 5), we prove that the total interference
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Fig. 5. Simulations of 𝐸[CSIR] and 𝐸a[I] as a function of 𝑁𝑡 and different
𝑁𝑝. 𝜎2

C = 0. Fixed CT (squares). Random CT (triangles). The lower bound
of 𝐸a[I] (43) and the upper bound of 𝐸[CSIR] (47) are also plotted (circles).

caused to the primary receivers by CT located at the center
of a disc is always larger than the one if CT were placed
randomly in the disc.

In Fig. 5, the simulated 𝐸a[I] and 𝐸[CSIR] are plotted as a
function of 𝑁𝑡 for 𝑁𝑝 = 100 and 1000 and 𝜎2C = 0. We have
shown the results for both random CT and fixed CT (where
CT is placed at the center of the disc). For comparison, the
lower bound of 𝐸a[I] (43) and the upper bound of 𝐸[CSIR]
(47) are also depicted. Clearly, the average interference is
smaller for random CT which is in accordance with our
discussion in Section V-B. Also as expected, increasing 𝑁𝑝

increases 𝐸a[I] and results in a lower 𝐸[CSIR]. On the
other hand, increasing the number of antennas at CT has the
opposite effect. The simulation results are quite close to the
theoretical limits given by the lower bound of 𝐸a[I] and the
upper bound of 𝐸[CSIR]. The results for the upper bound of
𝐸a[I] and the lower bound of 𝐸[CSIR] are not shown because
the objective of the beamformer is to minimize the interference
and maximize the CSIR, cf. (18). In fact, the upper bound of
𝐸a[I] and the lower bound of 𝐸[CSIR] are quite loose for
the relatively small 𝑐 considered in this figure. This is a good
indication that the beamforming vectors are performing well in
the small region of 𝑐. As we have seen in Fig. 4, as 𝑐 increases,
the system becomes saturated and the upper and lower bounds
of 𝐸a[I] and 𝐸[CSIR] converge to the same value. In other
words, choosing a random beamforming vector is as good as
using the optimal one obtained from (18) for 𝑐→ ∞.

In general, the bounds obtained for 𝐸a[I] and 𝐸[CSIR] in
(43) and (47) are asymptotic bounds for 𝑁𝑝/𝑁𝑡 → 𝑐 > 0 as
𝑁𝑡 → ∞. Therefore, a natural question to ask is how well
these bounds perform in finite region of 𝑁𝑡. This question
is answered in Fig. 6. In particular, the simulated 𝐸a[I] and
𝐸[CSIR] are plotted as a function of 𝑁𝑡 for 𝑐 = 10 and 100
(𝑐 is kept fixed by varying 𝑁𝑝 for different 𝑁𝑡’s). Again,
we consider both random and fixed CT and 𝜎2C = 0. For
reference, we have also plotted the lower bound of 𝐸a[I] (43)
and the upper bound of 𝐸[CSIR] (47). Note that the bounds
are constant for fixed value of 𝑐 because they depend only on
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the ratio 𝑐 = 𝑁𝑝/𝑁𝑡 and not the actual values of 𝑁𝑝 and 𝑁𝑡,
cf. (41), (43), and (47). The simulation results for 𝐸[CSIR] do
not deviate much with fixed 𝑐 and varying 𝑁𝑡 and the bounds
work well also for small values of 𝑁𝑡. On the other hand, for
𝑐 = 10 and 𝑁𝑡 < 6, the simulation results for 𝐸a[I] depend
on the actual values of 𝑁𝑡 and 𝑁𝑝 because they deviate even
if the ratio 𝑐 = 𝑁𝑝/𝑁𝑡 is fixed to a constant. This is not
surprising, because the asymptotic bounds assume large 𝑁𝑡.
Nevertheless, when 𝑁𝑡 ≥ 6, 𝐸a[I] becomes also dependent
only on the ratio 𝑐 = 𝑁𝑝/𝑁𝑡 and not the actual values of 𝑁𝑝

and 𝑁𝑡. In general, we find that when 𝑐 is large enough, the
simulation results for 𝐸a[I] depend also only on the ratio 𝑐
even for small values of 𝑁𝑡, cf. the 𝐸a[I] curves for 𝑐 = 100.

In our last example, we investigate the effect of noise on
𝐸a[I] and 𝐸[CSIR]. In Fig. 7, we plot 𝐸a[I] and 𝐸[CSIR] for
both fixed and random CT as a function of the noise variance
(𝜎2C) at the cognitive receiver. The lower bound of 𝐸a[I] and
the upper bound of 𝐸[CSIR] are also shown. Note that for
𝑁𝑝 ≤ 𝑁𝑡, the lower bound of 𝐸a[I] is 0. It is clear from
the figure that noise has a detrimental effect on both 𝐸a[I]
and 𝐸[CSIR]. Although 𝜎2C does not play a direct role in
calculating the average interference, cf. (21), we see that 𝐸a[I]
increases as 𝜎2C increases. This is because as 𝜎2C increases,
it dominates the denominator of (17) and therefore, the re-
sulting optimal beamforming vector emphasizes more on the
maximization of the received signal at the cognitive receiver
than on the minimization of the interference. As mentioned in
Section VI, if noise is absent from the cognitive receiver, it is
enough to use𝑁𝑡 = 𝑁𝑝 antennas at the cognitive transmitter in
order to achieve 𝐸a[I] = 0 and 𝐸[CSIR] = ∞. However, this
is certainly not true when noise is presented at the cognitive
receiver and in that case, it is desirable to increase 𝑁𝑡 beyond
𝑁𝑝. This is supported by our numerical and simulation results
as we can see that for a given 𝜎2C, increasing the number
of antennas at the cognitive transmitter decreases 𝐸a[I] while
increasing𝐸[CSIR]. On the other hand, if it is not affordable to
use many antennas at the cognitive transmitter and minimizing
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the interference at the primary receivers is the key objective
in the network, it may be desirable to drop the noise term
and consider only the interference term in the denominator of
(17) for the optimization of the beamforming vector. Finally,
it is also interesting to see that 𝐸[CSIR] is slightly smaller for
random CT than for fixed CT. This is because when CT is
placed at the center, its average distance to CR is closer than
if CT were placed randomly in the disc resulting in a higher
average received power at CR.

VIII. CONCLUSION

In this paper, we consider a cognitive network which
consists of multiple primary users and a single cognitive
user. The secondary cognitive transmitter is allowed to trans-
mit concurrently with the primary licensed transmitters. To
mitigate interference, the secondary user transmits signals
using multiple antennas with a beamforming vector. The
beamforming vector is designed to maximize the CSIR. We
derive bounds and provide asymptotic analyses for the average
CSIR and the average interference caused to all primary
receivers. In particular, we have shown that if the number of
antennas at the secondary transmitter is greater than or equal
to the number of primary receivers, the interference caused to
the primary receivers can be made zero, creating an infinite
CSIR at the cognitive user if noise is not presented at the
cognitive receiver. On the other hand, if the number of primary
receivers outgrows the number of antennas at the secondary
transmitter, then both the average interference and the average
CSIR approach fixed limits. These analyses can be useful in
deciding the number of antennas to deploy in the secondary
transmitters.
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APPENDIX A

Proposition 1: For 𝑚 < −𝑅𝛼 and 1 < 𝑐, 𝑧𝑹̃(𝑚) < 0.
Proof: It is desirable to show that

𝑧𝑹̃(𝑚) = − 1

𝑚
+

2𝑐

𝛼(𝑅2 − 𝜖2)
∫ 𝜖−𝛼

𝑅−𝛼

d𝜏

(1 + 𝜏𝑚)𝜏2/𝛼

< 0, for 𝑚 < −𝑅𝛼. (53)

Let 𝜏2/𝛼 = 𝑥−1, 𝑧𝑹̃(𝑚) becomes

𝑧𝑹̃(𝑚) = − 1

𝑚
+

2𝑐

𝛼(𝑅2 − 𝜖2)
∫ 𝜖2

𝑅2

(−𝛼/2)d𝑥
(1 +𝑚𝑥−𝛼/2)𝑥𝛼/2

= − 1

𝑚
+

𝑐

(𝑅2 − 𝜖2)
∫ 𝑅2

𝜖2

d𝑥

(𝑥𝛼/2 +𝑚)
. (54)

Therefore, the proof in (53) is equivalent to∫ 𝑅2

𝜖2

−1

𝑚
d𝑥 < 𝑐

∫ 𝑅2

𝜖2

−d𝑥

(𝑥𝛼/2 +𝑚)
. (55)

Since 1 < 𝑐, it is sufficient to prove (55) for the case of 𝑐 = 1.
Let 𝑛 = −𝑚, (55) becomes∫ 𝑅2

𝜖2

1

𝑛
d𝑥 <

∫ 𝑅2

𝜖2

d𝑥

(𝑛− 𝑥𝛼/2) . (56)

If 𝑛 > 𝑥𝛼/2, (56) always holds. The maximum value 𝑥 can
take is 𝑅2. Therefore, if

𝑛 > 𝑅𝛼 ⇔ −𝑚 > 𝑅𝛼 ⇔ 𝑚 < −𝑅𝛼, (57)

𝑛 is guaranteed to be greater than 𝑥𝛼/2 and (56) always hold
which completes this proof.

■
Proposition 2: For 𝑐 = 1, 𝑧𝑹̃(𝑚) < 0 for 𝑚 > 0.

Proof: It is desirable to show that

𝑧𝑹̃(𝑚) = − 1

𝑚
+

2

𝛼(𝑅2 − 𝜖2)
∫ 𝜖−𝛼

𝑅−𝛼

d𝜏

(1 + 𝜏𝑚)𝜏2/𝛼

< 0, for 𝑚 > 0. (58)

Making use of (54) derived in Proposition 2, (58) becomes

1

(𝑅2 − 𝜖2)
∫ 𝑅2

𝜖2

d𝑥

(𝑥𝛼/2 +𝑚)
<

1

𝑚
. (59)

The above equation can be written as∫ 𝑅2

𝜖2

d𝑥

(𝑥𝛼/2 +𝑚)
<

∫ 𝑅2

𝜖2

d𝑥

𝑚
. (60)

Since 𝜖2 ≤ 𝑥 ≤ 𝑅2, (60) always holds and the proof is
completed.

■
Proposition 3: For 𝑐→ ∞, the roots of 𝑧′

𝑹̃
(𝑚) are

𝑚1,𝑚2 ≈ ±
√

(𝜖2(𝛼−1)𝑅2(𝛼−1))(𝑅2 − 𝜖2)(𝛼 − 1)

𝑐(𝑅2(𝛼−1) − 𝜖2(𝛼−1))
. (61)

Proof: It is desirable to solve

𝑧′
𝑹̃
(𝑚) =

1

𝑚2
− 2𝑐

𝛼(𝑅2 − 𝜖2)
∫ 𝜖−𝛼

𝑅−𝛼

d𝜏

(1 + 𝜏𝑚)𝜏 (2−𝛼)/𝛼

= 0, 𝑐→ ∞. (62)

We note that when 𝑐 → ∞, in order for (62) to hold, 𝑚 ∝√
𝑐−1 ≈ 0 where ∝ denotes proportional to. Therefore, 𝑧′

𝑹̃
(𝑚)

becomes

𝑧′
𝑹̃
(𝑚) =

1

𝑚2
− 2𝑐

𝛼(𝑅2 − 𝜖2)
∫ 𝜖−𝛼

𝑅−𝛼

d𝜏

𝜏 (2−𝛼)/𝛼
, 𝛼 ≥ 2

=
1

𝑚2
− 2𝑐

𝛼(𝑅2 − 𝜖2)
∫ 𝜖−𝛼

𝑅−𝛼

𝜏 (𝛼−2)/𝛼d𝜏

=
1

𝑚2
− 2𝑐

𝛼(𝑅2 − 𝜖2)
𝛼

2(𝛼− 1)

(
𝜖2(1−𝛼) −𝑅2(1−𝛼)

)

=
1

𝑚2
− 𝑐

(𝑅2 − 𝜖2)(𝛼− 1)

(
𝑅2(𝛼−1) − 𝜖2(𝛼−1)

𝜖2(𝛼−1)𝑅2(𝛼−1)

)
. (63)

Setting (63) to zero, we obtain the roots in (61) and the proof
is completed.

■
Proposition 4: For 𝑐→ ∞,

𝑧𝑹̃(𝑚1) ≈ 𝑧𝑹̃(𝑚2) ≈ 𝑐𝐸[𝑑−𝛼], (64)

where 𝑚1 and 𝑚2 are the zeros of 𝑧′
𝑹̃
(𝑚) given in (49) and

(61) when 𝑐→ ∞.
Proof: The objective function 𝑧𝑹̃(𝑚) is given by

𝑧𝑹̃(𝑚) = − 1

𝑚
+

2𝑐

𝛼(𝑅2 − 𝜖2)
∫ 𝜖−𝛼

𝑅−𝛼

d𝜏

(1 + 𝜏𝑚)𝜏2/𝛼
. (65)

From (61), we can see that 𝑚1,𝑚2 ∝ ±
√
𝑐−1. As 𝑐→ ∞, the

first term in (65) is negligible when compared to the second
term in (65) and 𝑧𝑹̃(𝑚) is approximately given by

𝑧𝑹̃(𝑚1) ≈ 𝑧𝑹̃(𝑚2) ≈ 2𝑐

𝛼(𝑅2 − 𝜖2)
∫ 𝜖−𝛼

𝑅−𝛼

d𝜏

𝜏2/𝛼
, 𝑐→ ∞.

(66)
Proceeding with the integration in (66) for the case where
𝛼 = 2 and 𝛼 > 2, we arrive with

𝑧𝑹̃(𝑚1) ≈ 𝑧𝑹̃(𝑚2)

≈

⎧⎨
⎩

𝑐
ln(𝑅2/𝜖2)

𝑅2 − 𝜖2 = 𝑐𝐸[𝑑−𝛼], 𝛼 = 2

𝑐
2(𝜖2−𝛼 −𝑅2−𝛼)

(𝑅2 − 𝜖2)(𝛼− 2)
= 𝑐𝐸[𝑑−𝛼], 𝛼 > 2

,(67)

where 𝐸[𝑑−𝛼] is the average path loss given in (45).

■
Proposition 5: The total interference caused to the primary

receivers by CT located at the center of a disc is always larger
than the one if CT were placed randomly in the disc.
Proof: Let 𝑡𝑐 = 𝑑−𝛼

𝑐 and 𝑡𝑟 = 𝑑−𝛼
𝑟 where 𝑑𝑐 is the distance

from the center of a disc to a random location in the disc
and 𝑑𝑟 is the distance between two random locations in the
disc. We denote the p.d.f. of 𝑡𝑐 and 𝑡𝑟 by 𝑝𝑡𝑐(𝑥) and 𝑝𝑡𝑟(𝑥),
respectively. The domain of 𝑝𝑡𝑐(𝑥) and 𝑝𝑡𝑟 (𝑥) are 𝑅−𝛼 ≤
𝑡𝑐 ≤ 𝜖−𝛼 and (2𝑅)−𝛼 ≤ 𝑡𝑟 ≤ 𝜖−𝛼, respectively. Note that the
total interference 𝐼(𝑑−𝛼

1 , . . . , 𝑑−𝛼
𝑁𝑝

) is an increasing function of
𝑑−𝛼
𝑖 , 1 ≤ 𝑖 ≤ 𝑁𝑝 and we have to consider only one distance

because 𝑑𝑖’s are i.i.d.. Specifically, we have to prove that∫ 𝜖−𝛼

(2𝑅)−𝛼

𝐼(𝑥)𝑝𝑡𝑟 (𝑥)d𝑥 ≤
∫ 𝜖−𝛼

𝑅−𝛼

𝐼(𝑥)𝑝𝑡𝑐(𝑥)d𝑥. (68)
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By breaking the integral on the left hand side of (68) into two
parts, it can be seen that the prove is identical to∫ 𝑅−𝛼

(2𝑅)−𝛼

𝐼(𝑥)𝑝𝑡𝑟 (𝑥)d𝑥 ≤
∫ 𝜖−𝛼

𝑅−𝛼

𝐼(𝑥)(𝑝𝑡𝑐(𝑥) − 𝑝𝑡𝑟(𝑥))d𝑥.
(69)

Since 𝐼(𝑥) is an increasing function of 𝑥, it is sufficient to
prove

𝐼(𝑅−𝛼)

∫ 𝑅−𝛼

(2𝑅)−𝛼

𝑝𝑡𝑟(𝑥)d𝑥 ≤
∫ 𝜖−𝛼

𝑅−𝛼

𝐼(𝑥)(𝑝𝑡𝑐 (𝑥)− 𝑝𝑡𝑟 (𝑥))d𝑥.
(70)

Making use of the fact that the integral of any p.d.f. over its
domain is 1, we have the following equality7,∫ 𝑅−𝛼

(2𝑅)−𝛼

𝑝𝑡𝑟(𝑥)d𝑥 =

∫ 𝜖−𝛼

𝑅−𝛼

(𝑝𝑡𝑐(𝑥)− 𝑝𝑡𝑟 (𝑥))d𝑥. (71)

Therefore, we can replace the integral on the left hand side of
(70) with the right hand side of (71). Finally, recall 𝐼(𝑥) is an
increasing function of 𝑥, we have 𝐼(𝑅−𝛼) ≤ 𝐼(𝑥), 𝑅−𝛼 ≤ 𝑥
and therefore, the inequality in (70) holds and the proof is
completed.
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