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Abstract—This paper proposes linear precoder designs ex-
ploiting statistical channel knowledge at the transmitter in a
multiple-input multiple-output (MIMO) wireless system. The
paper focuses on channel statistics, since obtaining real-time
channel state information at the transmitter can be difficult due
to channel dynamics. The considered channel statistics consist of
the channel mean and transmit antenna correlation. The receiver
is assumed to know the instantaneous channel precisely. The
precoder operates along with a space–time block code (STBC)
and aims to minimize the Chernoff bound on the pairwise error
probability (PEP) between a pair of block codewords, aver-
aged over channel fading statistics. Two PEP design criteria are
studied—minimum distance and average distance. The optimal
precoder with an orthogonal STBC is established, using a convex
optimization framework. Different relaxations then extend the
solution to systems with nonorthogonal STBCs. In both cases,
the precoder is a function of both the channel mean and the
transmit correlation. A linear precoder acts as a combination of a
multimode beamformer and an input shaping matrix, matching
each side to the channel and to the input signal structure, re-
spectively. Both the optimal beam direction and the power of
each mode, obtained via a dynamic water-filling process, depend
on the signal-to-noise ratio (SNR). Asymptotic analyses of the
results reveal that, for all STBCs, the precoder approaches a
single-mode beamformer on the dominant right singular vector
of the channel mean as the channel factor increases. On the
other hand, as the SNR increases, it approaches an equipower
multiple-mode beamformer, matched to the eigenvectors of the
transmit correlation. Design examples and numerical simulation
results for both orthogonal and nonorthogonal STBC precoding
solutions are provided, illustrating the precoding array gain.

Index Terms—Channel side information (CSI), correlated fading
channels, multiple-input multiple-output (MIMO) wireless, pre-
coding, space–time codes.

I. INTRODUCTION

EXPLOITING channel side information (CSI) at the
transmitter in a multiple-input multiple-output (MIMO)

wireless system has been an active research area. Transmit CSI
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(CSIT) can enhance MIMO system performance by increasing
the spectral efficiency or reducing the error probability [7], [10],
[31]. A precoder is a transmit processing block that exploits
the CSIT. The separation between a precoding function, which
depends on the CSIT, and channel coding, which assumes
no CSIT, has been shown to be capacity-optimal for fading
channels, based on information-theoretic analyses for both
single-antenna [8] and multiple-antenna systems [9]. These
results apply to the CSI case studied in this paper.

Channel information can be obtained at the transmitter by
measuring the reverse channel, invoking the reciprocity prin-
ciple in time-division duplexing systems, or by using feedback
from the receiver. The fluctuating nature of a wireless channel
often induces unreliable instantaneous CSIT, due to a time
delay or a frequency offset between the channel measurement
and its use. An alternative is to use statistical information,
such as the antenna correlations [29] and/or the channel mean
[30]. These statistics vary at a much slower rate than the in-
stantaneous channel and, therefore, can be obtained reliably at
the transmitter. Statistical CSIT is especially relevant for fast
time-varying channels. Other forms of CSIT include channel
parameters, such as the channel factor, a condition number,
or the signal-to-noise ratio (SNR).

Research on exploiting CSIT uses a variety of criteria. One
category is to study the optimal input signal characteristics that
achieve the channel ergodic capacity with the CSIT condition.
The problem reduces to finding the covariance of the optimal
Gaussian input signal as a function of the CSIT. The optimal
signal with this covariance is equivalent to an independent
identically distributed (i.i.d.) signal going through an optimal
linear precoder. Research in this category includes studies on
exploiting antenna correlations [11]–[13], the channel mean
[11], [14], [15], or the factor and phase statistics [16].

Another category in utilizing the CSIT is to minimize
the system error probability. A common setup includes a
space–time block code (STBC) exploiting channel diversity
and a linear precoder exploiting the CSIT. An STBC is often
designed for i.i.d. Rayleigh fading channels, assuming no
CSIT. A linear precoder functions as a multimode beamformer
matching to the channel, based on the CSIT, with orthogonal
beam directions as the left singular vectors, and the beam
power-loadings as the squared singular values of the precoding
matrix. The STBC and precoder combination, therefore, is
robust to channel fading and can concurrently exploit the avail-
able CSIT. Moreover, if an STBC is capacity lossless for an
i.i.d. MIMO channel, then combining this STBC with a linear
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precoder is capacity optimal for the channel with CSIT [9].
Such a setup also provides flexibility in designing precoders to
adapt to various CSIT conditions, without changing the STBC
or the detection scheme in an existing system.

Examples of prior literature using the error criteria include
schemes exploiting imperfect channel estimates [18], [22], the
channel mean feedback [19], or the transmit antenna correlation
[20], [21]. These papers primarily focused on exploiting only
one form of channel statistics: either the channel mean or the
transmit antenna correlation ([18] formulates the problem for a
general mean and covariance model, but only solves for the un-
correlated case). The linear precoder solutions reduce to fixed
beam directions, given by the singular vectors or eigenvectors
of the mean or correlation matrices, with per-beam power al-
location, obtained by a water-filling solution dependent on the
SNR.

In this paper, we design a precoder to simultaneously exploit
both the channel mean and the transmit correlation to minimize
the error probability in MIMO systems, using an approach sim-
ilar to [18]. Exploiting both mean and transmit correlation al-
lows us to address a wider range of channels. Our precoder de-
signs can also be applied to the CSIT scenario of an imperfect
channel estimate with a known error covariance. In our problem,
due to the interaction of the mean and the transmit correlation,
the precoder solution does not have fixed beam directions. In-
stead, both the direction and the power loading of each beam
are functions of both the mean and correlation matrices and are
dependent on the SNR. Thus, we call the process of solving for
the optimal precoder a dynamic water-filling process. Asymp-
totic analyses reveal that the precoder depends primarily on the
channel mean at high factors and primarily on the transmit
correlation at high SNRs.

The precoder obtains an array gain, attributed to the optimal
beam directions and the water-filling type power allocation
among these beams. Due to statistical CSIT, no diversity gain
can be extracted from the channel information. Therefore, the
diversity achieved by the system is controlled by the STBC.
Our precoder design works with all STBCs. In addition, our
framework focusing on extracting an array gain is funda-
mentally different from, and complementary to, achieving the
diversity-multiplexing frontier at high SNRs as in [27] and [28].

The paper is organized as follows. Section II outlines the
channel model and the system setup. Section III discusses the
PEP measure and the design criteria. Section IV then proceeds
to design the optimal precoder for a system with an orthogonal
STBC. Section V extends the precoder result to systems with a
general STBC. Asymptotic analyses of the precoder result at a
high factor and a high SNR are provided in Section VI. Spe-
cial cases of the precoder design are discussed in Section VII.
Section VIII then provides specific design examples and perfor-
mance results. Finally, we conclude in Section IX.

Notations used in this paper are as follows: for conjugate
transpose, for expectation, for trace, for the
Frobenius norm, for eigenvalues, for singular values,

for optimal values, for a positive value inside the
parenthesis or zero, for the matrix positive semidefinite rela-
tion, for positive definite, boldface for matrices (except when
referring to a generic matrix). When ordering matters, we use

the eigenvalue (singular value) index to indicate an increased
sorting order, i.e., for a matrix with real eigenvalues,

.

II. CHANNEL MODEL AND SYSTEM SETUP

A. Channel Model

Consider a MIMO wireless communication system with
transmit and receive antennas. The channel is frequency-flat
and quasi-static block fading, represented by a matrix of size

. Assuming a non-zero-mean channel with a transmit
antenna correlation, the channel matrix can be written in the
form

(1)

Here, is the ratio of the power in the mean component to
the average power in the random components of the channel;

is a complex Gaussian random matrix with independent
zero-mean unit-variance entries, i.e., ; is the
normalized channel mean, and is the normalized transmit
correlation matrix, such that

(2)

This normalization maintains a constant average power gain of
in the channel for any combination of mean and correla-

tion matrices: . The transmit signal power
is assumed to have been adjusted accordingly. The normaliza-
tion ensures a fair performance comparison between systems
operating on channels with different mean or correlation ma-
trices and, therefore, allows an objective precoding gain mea-
sure (otherwise, a stronger channel power gain will likely re-
sult in a better precoding gain). For simpler expressions, except
when studying the effect of the factor on the precoder, we
will use the following channel model in our analysis:

(3)

where is the channel mean, and
is the transmit correlation matrix.

We assume that the transmit correlation matrix is full rank
and, hence, is invertible. The rank of the channel mean, on the
other hand, can be arbitrary. The mean of the channel can cor-
respond to the Rician line-of-sight component or to clusters of
strong paths in the propagation environment. (For a study that
explores Rician channels with a non-full-rank correlation, see
[17], for example.) The mean and correlation values can also
correspond to a channel estimate and its error covariance; al-
though in that case, the statistics are only short term, as they
change when a new estimate becomes available. Such a channel
estimate with known error covariance model is established in
[18].

The receiver is assumed to know the channel perfectly (i.e.,
it knows the channel realization ), whereas the transmitter
only knows the channel mean and the transmit correlation

. The mean and the correlation values are more stable than
the instantaneous channel and can be obtained reliably at the
transmitter, by either utilizing the reverse channel statistics or
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Fig. 1. System architecture with a linear precoder and a STBC.

using feedback from the receiver. These statistics can be ob-
tained by time-averaging operations on channel measurements,
over a window of tens of channel coherence times; they remain
valid for tens to hundreds of channel coherence times. For ex-
ample, suppose that we have causal channel measurements of

(3) up to the current time sample 0, where each measurement
is created by a different realization of . Then, the channel
mean and transmit correlation matrices are calculated as

where is the averaging window, and is the instantaneous
channel measurement at the sample time .

B. System Setup

We consider a system using a space–time block code to cap-
ture the channel diversity and a precoder to capture the CSIT,
depicted in Fig. 1. In such a system, the precoder can be viewed
as a processing block to enhance performance in addition to
an existing STBC, based on the available CSIT. This scenario
covers many practical wireless systems, such as those in wire-
less local-area networks (802.11) and metropolitan-area net-
works (802.16). We restrict our attention to a linear precoder.
The combination of a linear precoder and a space–time block
code is capacity-optimal with CSIT, if the STBC is capacity
lossless for an i.i.d. MIMO channel without CSIT [9]. The ca-
pacity-optimal signal for an i.i.d. MIMO channel without CSIT
is zero-mean complex Gaussian with an identity covariance ma-
trix [6]. Therefore, the linear precoder has the effect of shaping
the transmit signal such that it has a covariance matrix optimal
for the channel with CSIT.

At each time instance, the linear precoder functions as a
beamformer with either one or multiple beams. The beam
directions are the left singular vectors of the precoder matrix;
the beam power loadings are the squared singular values. The
right singular vectors of the precoding matrix combine the
output symbols of the STBC to feed into each beam. The STBC
helps to mitigate the effect of unknown fading in a channel with
incomplete CSIT. The combination of a STBC and a precoder
makes the system robust against fading, while delivering both
diversity and antenna array gains. It also provides the flexibility
of adapting to various CSIT conditions, without changing the
STBC or the detection algorithm already implemented. Detec-
tion in a system with precoding is performed over the effective
channel created by the precoder and the actual channel. The
receiver can construct the precoder using the same algorithm
and parameters as the transmitter, which implicitly implies that

the receiver must know all the parameters that the transmitter
knows. This assumption is reasonable since the receiver can
usually obtain channel measurements more readily than the
transmitter through the use of pilots, and both can agree on
using the same precoding design algorithm.

To maintain a constant average sum transmit power, the pre-
coding matrix must satisfy the power constraint

(4)

Let of size be the block codeword in the STBC, the
receive signal block is then

where is the additive complex white Gaussian
noise, with being the noise power per spatial dimension. The
receiver performs maximum-likelihood (ML) detection over a
codeword to obtain

(5)

where is the STBC codebook, and the subscript here de-
notes the Frobenius norm. In this system, we analyze the per-
formance without an outer error-correction code.

III. PEP MEASURE AND DESIGN CRITERIA

A. Pairwise Error Probability Measure

We consider the pairwise error probability (PEP), which is the
probability that a transmitted codeword has a worse detection
metric than another codeword . With ML detection (5) and
applying the Chernoff bound, similar to [2], the PEP can be
tightly upper-bounded by

(6)

The PEP depends on the specific codeword pair ( , ). We de-
fine the following expression as the codeword distance product
matrix

(7)

where is the average sum transmit power. The Chernoff bound
function in (6) can then be written as

(8)

where is the SNR.
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While the PEP is not the system codeword-error rate, it is a
measure strongly related to the system performance. The system
average codeword-error probability can be written as:

where is the probability of the codeword , and
is the event that is mis-detected as . The above error ex-
pression is not very tractable and, therefore, does not lend it-
self to the analysis of the precoder design problem. We choose
to use the PEP, averaged over the channel fading, as the per-
formance criterion. The exact PEP expression, however, is still
complex to analyze. Therefore, we aim to design a precoder that
minimizes the Chernoff upper-bound on the PEP. The Chernoff
bound tracks the performance well and provides an analytical
framework for establishing closed-form precoder solutions. The
PEP with the Chernoff bound is a framework commonly used in
the literature [2], [18], [20].

B. Worst-Case and Average-Case Designs

Since the PEP is codeword-pair dependent, we need a de-
sign rule for picking the codeword distance product matrix
(7), over which the PEP is optimized. Noting that the Chernoff
bound expression (8) is monotonic in (specifically,
implies ), we confine the code-
word distance selection to two options. The first is the minimum
distance, corresponding to the largest PEP. Of interest is the av-
erage performance over channel fading; therefore, this criterion
can be expressed as

(9)

If the occurrence probability of the minimum-distance code-
word pairs is not small, these pairs will dominate the error
performance; thus, the minimum-distance design will lead to
a reasonable overall performance gain. This distance criterion
guarantees a minimum precoding gain, based on the gain
obtained from optimizing the Chernoff bound, and has often
been used in the literature [18].

We also examine the average distance over all codeword
pairs. Since the precoder only acts on one column of the
codeword at a time, and detection is performed jointly over
the whole code-block of symbol periods, we propose an
average-distance measure as

(10)
where , and is the probability of the pair

among all pairs of distinct codewords. In effect, is
the covariance of the codeword error. The design criterion in this
case becomes

(11)

The average distance leads to a smaller value of the Chernoff
bound (8) compared to the minimum distance; therefore, the

gain obtained from optimizing this bound may not be guaran-
teed to be the minimum precoding gain of the system. However,
the average distance has an advantage over the minimum dis-
tance for nonorthogonal STBCs, in that is more likely to be
a scaled-identity matrix. The implication of a scaled-identity
will be discussed in Section V.

C. Optimization Problem

Assume that a codeword distance product matrix has
been chosen, based on the appropriate design choice. The
objective is to find a precoder to minimize the expression

, where is the Chernoff bound in (8). This
problem formulation follows closely from [18]. Given the
probability density distribution of the channel

after averaging (8) over the channel statistics, we obtain the fol-
lowing bound on the average PEP:

(12)

where

(13)

Expression (12) is a special case of the general problem setup in
[18], in which the upper bound is given for a general mean and
covariance CSIT model. [18] provides the precoder solution for
a channel mean CSIT with an identity covariance (equivalent
to uncorrelated antennas) in systems using orthogonal STBCs.
The precoder design problem for a non-Kronecker covariance,
or antenna correlation, still remains unsolved. Our formulation
and solution apply to the CSIT in the form of an arbitrary mean
and separable Kronecker antenna correlation [29], assuming un-
correlated receive antennas.

Minimizing the bound in (12) is equivalent to minimizing the
logarithm of this bound; ignoring the constant terms leads to the
following objective function:

(14)

which is convex in the matrix variable . Combining this ob-
jective function with the precoding power constraint (4), an op-
timization problem for designing can be posed as

subject to (15)

Due to the nonlinear power constraint, this problem is not
convex in and, hence, is not directly tractable in the original
variable . The tractability of this problem depends on the
structure of the matrix . Since depends on the STBC, we
will first solve the precoder design problem for orthogonal
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STBCs, which lend an attractive property to , and then extend
the analysis to general STBCs.

IV. PRECODER DESIGN WITH AN ORTHOGONAL STBC

A. The Optimization Problem for Precoding With an OSTBC

We first consider precoding with an orthogonal STBC
(OSTBC) [3] specifically. Due to its orthogonality, the distance
product matrix of an OSTBC has a special form

where represents the codeword distance, depending on the
specific codeword pair.

Let be the value corresponding to the matrix used in
the precoder optimization problem. Based on the design choice
(Section III-B), can either be the minimum distance or the
average distance over all distinct-codeword pairs. In the numer-
ical simulation section (Section VIII), we will give examples of
how is calculated in each case.

A scaled-identity matrix helps to significantly simplify the
optimization problem (15). The variable is now a linear func-
tion of and (15) becomes

subject to (16)

Denote 1
4 . This problem can be cast in terms of

as follows:

subject to (17)

where the last inequality results from the positive semidefinite
(PSD) property that . The new formulation (17) is
convex in the matrix variable and can be solved analytically.

B. Precoder Design Algorithm

Problem Analysis: We first analyze problem (17), using the
Lagrangian dual method [32]. Let be the following function
of :

(18)

then the two constraints in (17) can be rewritten as

(19)

(20)

Form the Lagrangian of (17) as

(21)

where is the Lagrange multiplier associated with the equality
constraint (19), and is the Lagrange multiplier in the
matrix form associated with the inequality constraint (20).

Strong duality holds for problem (17), easily verifiable using
Slaters condition [32]. This condition requires the existence of
a strictly feasible point: a positive definite matrix sat-
isfying the equality constraint (19). An example is .
Therefore, the primal and dual optimal points of (17) satisfy
the Karush–Kuhn–Tucker (KKT) conditions [32]

where denotes the optimal value, and is the value of
evaluated at the optimal .

In particular, the three conditions , and
mean that all eigenvalues of the positive semidef-

inite product are zero. Thus, and must have the
same eigenvectors, and their eigenvalue patterns are comple-
mentary; that is, if , then , and vice
versa. effectively ensures that is positive semidefinite:
represents the eigenmodes that are dropped in a water-filling
solution, whereas represents the modes that are active (with
nonzero power). Therefore, if we distribute power over the cor-
rect number of positive eigenvalues of and let the rest of eigen-
values be zero, then in the Lagrangian (21), the term is
automatically zero at the optimal values and, hence, can be ig-
nored. From this observation, we present a two-step algorithm
for solving problem (17) as outlined below.

Design Algorithm: First, we assume that the optimal is
full rank, effectively ignoring the PSD inequality constraint
(20), and solve for . If the solution of this step produces

, then it is also the solution for the original problem (17).
The matrix becomes the scaled precoder product ,
which is full-mode in this case. However, if the solution of the
first step does not produce a PSD , we then proceed to the
second step. In this step, we force the weakest eigenvalue of
to be zero, effectively reducing the rank of , and resolve the
problem, iterating this step until is PSD. This second step is
equivalent to mode-dropping in a water-filling process.

Ignoring in the Lagrangian (21), the optimality con-
dition is obtained by differentiating this expression with respect
to [36] to arrive at

Multiply this equation on both the left and right with to get
a quadratic matrix equation. Solving the equation leads to the
solution for as [23]

where

(22)

From here, we need to find the Lagrange multiplier , based on
the transmit power equality constraint (19).
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1) Full-Mode Solution: The full-mode solution is obtained
by solving for , assuming is full rank. Equation (19) can then
be written as

(23)

Let be the eigenvalues of
sorted in increasing order, , and noting
that , the above equation becomes

(24)

In the general case , this equation does not appear
to have a closed-form solution. However, solving for can be
done efficiently using a binary search, which we call the inner
algorithm.

Inner Algorithm: Since the left-hand-side expression in (23)
is monotonous in , the following lower and upper bounds on
can be established:

(25)

where is the minimum eigenvalue and is the trace of
. The lower bound is obtained from (24) by

replacing all with , while the upper bound is obtained by
applying the Cauchy–Schwartz inequality [34] to the summa-
tion term. A numerical binary search can then be carried out be-
tween these bounds to find the solution for (24) up to a desired
precision. The number of iterations depends on the problem pa-
rameters, but convergence usually occurs rapidly since this is
one-dimensional (1-D) binary search.

2) Mode-Dropping Solution: If the full-mode solution does
not produce , then we drop the weakest eigenmode of

and resolve for . This step is equivalent to a water-filling
iteration. The total power will now be distributed over the
largest eigenvalues of , and the power constraint (23) changes
to

(26)

where , the number of modes dropped, and is the th
eigenvalue of the matrix in the parenthesis, sorted in increasing
order . The solution for is obtained after
solving this equation for , forming the right-hand-side expres-
sion in (18), and forcing its smallest eigenvalue to be zero, after
which, it satisfies (19). If this solution does not satisfy (20), then
the number of dropped modes is increased by 1 and (26) is
re-solved. Again, this equation does not have a closed-form so-
lution. Using an efficient binary search, we design an algorithm
to numerically solve for , which is termed the outer algorithm.

Outer Algorithm: There is no explicit function relating the
eigenvalues of a general matrix sum to the individual eigen-
values; therefore, each eigenvalue in (26) cannot be written as
an explicit function of (except in the special cases discussed in
Section VII). Fortunately, noting that the sum of eigenvalues in
(26) is monotonous in , we can derive upper and lower bounds

on , then use a binary search to find the solution efficiently up
to any desired numerical precision. The bounds in the general
case with modes dropped are

(27)

where and are the maximum and minimum eigenvalues
of , respectively, and

The derivation of these bounds is given in the Appendix.
3) Dynamic Water-Filling: The mode-dropping process

above is similar to the water-filling process, in that at each outer
iteration, an eigenmode (the weakest among the active modes)
is dropped, and the total transmit power is reallocated over the
rest of the modes. However, there is a significant difference
between this process and the conventional water-filling process.
In conventional water-filling, only the power allocation, or the
water level, changes after each iteration, but the mode direc-
tions remain the same. In our problem, the mode directions also
evolve at each iteration, due to the interaction of the channel
mean and transmit correlation matrices. To see this effect more
clearly, rewrite the expression for in the following form:

where the notation illustrates the dependence of on .
The “water-level” here is , and the mode directions are
determined by the eigenvectors of the matrix expression inside
the large parenthesis. When changes at each outer iteration,
both the water-level (hence, the power allocation) and the mode
directions change. Moreover, since the solution depends on
the SNR , both the precoder power allocation and mode (beam)
directions are functions of the SNR. For this reason, we call this
a dynamic water-filling process.

C. Optimal Precoder Solution With an OSTBC

When is found satisfying the PSD constraint (20), then the
matrix provides the solution for as

(28)

From this product expression, an optimal precoder can be de-
rived. The optimal precoder is not unique. Let the eigenvalue
decomposition of be

then, in terms of the singular value decomposition (SVD), the
optimal precoder matrix is

(29)

The left singular vectors and the singular values of an optimal
precoder are the eigenvectors and the scaled square roots of the
eigenvalues of , respectively. The right singular vectors ,
however, can be any unitary matrix, attributed to the codeword
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distance product matrix being scaled-identity. For simplicity,
we can choose for a precoder with an OSTBC.

D. Summary

In this section, by solving a convex optimization problem
with matrix variables, we have established an analytical design
algorithm for a precoder with an orthogonal STBC. The algo-
rithm resembles the water-filling process. At first, it is assumed
that all precoder eigenmodes are used, and power allocation is
performed on all modes. If any mode has negative power, the
most negative mode is dropped, and the power is reallocated ac-
cordingly. During this process, the precoder eigenbeam direc-
tions also evolve with the water-filling iterations. Each iteration
essentially aims at finding a Lagrange multiplier solution, using
an efficient binary search. The algorithm produces the optimal
beam directions, which are the precoder left singular vectors,
and the optimal beam power allocation, which gives the singular
values. The precoder right singular vectors, however, can be ar-
bitrary, due to the isotropic property of the orthogonal STBC,
and are usually omitted.

V. PRECODER DESIGN WITH A GENERAL STBC

We now return to the original optimization problem (15) and
examine the case that the codeword distance product matrix
(7) results from any STBC. For a nonorthogonal STBC, is
not always a scaled-identity matrix. Since the scaled-identity

case was solved in Section IV, we focus on solving for the
nonidentity next, then discuss the precoder solution with a
general STBC in Section V-B.

A. Problem Analysis for a Nonidentity Codeword
Distance Product

When is not a scaled-identity matrix, solving the optimiza-
tion problem (15) is more difficult. In particular, due to the non-
convexity in this case, it is not obvious if the problem can be
solved exactly. In this section, we will analyze and reformulate
the problem, then apply different relaxations to obtain the pre-
coder analytically.

To analyze (15) for a nonidentity , consider the following
more constrained problem:

(30)

subject to

where is a positive constant. Since this problem is more con-
strained than the original problem (15), the optimal value of
this problem will be larger than, or equal to, the optimal value
in (15). The smallest optimal value in (30) across different
values, however, will equal the optimal value in (15), which
is the point at which the two problems become equivalent.

Now consider problem (30) with different values. In this
problem, the condition acts as an additional
transmit power constraint. Obviously, with more transmit
power, the error probability, or the objective function equiva-
lently, will be smaller. Thus, we are interested in this problem

with the largest feasible ; that is, the largest value such
that there exists an satisfying both equality constraints

and .
Applying the matrix inequality

for PSD matrices [35], we have

(31)

The equality occurs when the eigenvectors of are the same
as those of . Let the singular value decomposition of the pre-
coder be , this equality condition means

(32)

where is the eigenvalue decomposition of .
Since the eigenvalues of are the same as those of , the
equality condition translates to .
Condition (32) ensures the largest value for , without imposing
any constraint on the eigenvalues of or , except their
orders relative to . With this condition, problem (30) and
the original problem (15) become equivalent when is chosen
to be the same as that resulted from the optimal solution of (15):

.
Based on these arguments, condition (32) is optimal for the

original problem (15). This problem is then equivalent to the
following problem:

subject to (33)

where , and are the inverses of the
nonzero eigenvalues of .

By finding the optimal right singular vectors of in (32), we
have reformulated the original problem (15) into a new problem
in terms of the variable . The new formulation (33), however,
is not convex in , due to the nonlinear equality constraint in-
volving the eigenvalues of . We proceed by applying some
relaxation to this constraint to obtain an analytical precoder so-
lution. Due to relaxation, the solution in this case may not be op-
timal for the original problem. Two different relaxations follow.

1) Minimum Eigenvalue Relaxation Method: Employing
the inequality , we relax the problem
by replacing all with , which is equivalent to ap-
proximating in (15) with an identity matrix, scaled by
the minimum nonzero eigenvalue of . This approximation
effectively produces a smaller (in the positive semidefinite
sense), hence loosening the upper bound on the PEP in (12). We
then obtain the same problem formulation as in the orthogonal
STBC case (16), where the value for the minimum-distance
design is [24]

and for the average-distance design is (with
. This relaxation method works well if the condition

number of is reasonably small.



VU AND PAULRAJ: OPTIMAL LINEAR PRECODERS FOR MIMO WIRELESS CORRELATED CHANNELS 2325

2) Trace Relaxation Method: Another relaxation method
is to replace the equality constraint on the eigenvalues of
with the linear constraint , making the relaxed
problem convex. Since for
ordered eigenvalues [34], this relaxation method will result in
a precoder with , meaning that the total transmit
power may be less than the original constraint (4). A scaling
factor can then be applied to the precoder solution of the relaxed
problem to increase the power to meet the original constraint.

In order to solve this relaxed problem, reformulate the
problem in terms of as

subject to (34)

This problem is similar to (17), but with a more general trace
constraint; it can be solved using a similar approach. The steps
for solving this problem and the solutions for and are
given in the Appendix.

B. Precoder Solution With a General STBC

Returning to the general STBC case, if the codeword distance
product matrix is a scaled-identify matrix, then the precoder
solution is similar to that of the orthogonal STBC case (29). For
a nonidentity , employ one of the relaxation methods outlined
above and solve for . Perform the eigenvalue decomposition
of this matrix as , then the precoder solution is

(35)

For an orthogonal STBC, since is always a scaled-identity
matrix, is an arbitrary unitary matrix and, hence, can be
omitted. For a nonorthogonal STBC, depends on the STBC
structure. Specifically, when is not a scaled-identity matrix,
the input signal produced by the STBC has a certain codeword-
error shape with directions and power loadings . The
precoder then matches both its input signal structures and the
channel. It effectively remaps the input signal directions from

into and redistributes the transmit power according to
the CSIT to optimally match the channel. Note that the pre-
coder beam directions (the left singular vectors ) depend
only on the CSIT; the input shaping matrix (the right singular
vectors ) depends only on the precoder input signal—the
STBC structure; and the power allocation now depends on both
sides.

Recall that the matrix can be chosen based on the min-
imum- or average-distance criterion. Between these two criteria,
the average-distance criterion usually produces a scaled-identity
matrix , assuming equiprobability and independence among
all input symbols. The reason is that STBCs commonly assume
no CSIT and distribute power equally among all antennas and all
symbols, leading to a white error covariance. The minimum-dis-
tance criterion, on the other hand, can often produce a noniden-
tity .

C. Summary

We have extended the precoder design algorithm in
Section IV-B to cover precoding with a nonorthogonal STBC.
In contrast to the isotropic property of an orthogonal STBC,
a nonorthogonal STBC may preshape the input signal with a
nonidentity codeword distance product matrix . In that case,
the precoder optimal right singular vectors are given by the
eigenvectors of . For a nonidentity , we use relaxations to
find the precoder left singular vectors and the singular values.
In general, the precoder solution contains matching singular
vectors on each side to the STBC structure and to the channel,
respectively, while the singular values depend on both the
STBC and the CSIT. The precoder essentially remaps the spa-
tial directions of the input signal to match those of the channel,
based on the CSIT, and allocates transmit power accordingly in
a water-filling fashion.

VI. ASYMPTOTIC ANALYSIS OF THE PRECODER RESULTS

A. Effect of a High Factor on the Precoder

In this section, we investigate the effect on the optimal pre-
coder as the channel factor increases to infinity. An infinite

can correspond to a nonfading channel, or to perfect instan-
taneous CSIT. In either case, it is useful to study this limit, so
that applicable scenarios can be identified.

When approaches infinity, the objective function (14) is
invalid since it also approaches infinity; hence, we need to an-
alyze the full upper-bound (12). Using the channel model with
the factor in (1), we rewrite this bound as

(36)

where

Express in the form , where

With sufficiently large , the largest eigenvalue of the PSD Her-
mitian matrix will be less than 1, and the following expansion
[36] can be applied:

Replacing this expansion into the upper-bound (36), and noting
that

as

the limiting upper bound on the average PEP is

Minimizing is equivalent to maximizing the
trace expression. We apply the inequality
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[35] with as sorted singular values,
where the equality is achieved when the right singular vectors
of (and ) align with the left singular vectors of (and ,
respectively). Taking the power constraint (4) into account, the
optimal precoder has the form [24]

(37)

where is the dominant eigenvector of and is the
dominant eigenvector of . In other words, the optimal pre-
coder, in the limit of an infinite factor, is a single-mode
beamformer, matching the dominant right singular vector of
the channel mean. This result applies regardless of the STBC
or the choice of the minimum- or average-distance design, as
the left singular vectors of are independent of .

Note that for a multiple-input single-output (MISO) system
at the infinite factor (or perfect channel knowledge), single-
mode beamforming is also optimal for achieving the channel
capacity [7]. Therefore, the proposed precoding solution is op-
timal for a MISO system in the PEP criterion and asymptotically
optimal in capacity. For a MIMO system, however, the optimal
solution in the limit of infinite differs between the two cri-
teria: PEP and capacity. Whereas the capacity solution calls for
water-filling over the eigenmodes of the channel, the PEP so-
lution places all transmit power on the dominant mode. Thus,
for a MIMO channel with a high factor, a precoder based on
the PEP criterion is suitable for use along with a STBC with
a rate of one or less. However, as increases, the role of the
STBC becomes less important in obtaining diversity. Moreover,
the power loading on the precoder dominant mode increases as

increases; therefore, precoding can be combined with adap-
tive modulation and coding to take the full advantage of high .
At a low factor, due to the multimode beamforming effect, a
higher rate STBC can also be used with the precoder in a MIMO
system.

B. High-SNR Precoder Analysis

To analyze the effect of the SNR on the precoder, we ex-
amine the objective function (14), noting that affects as
given in (13). When then ; thus in the limit,
the objective function becomes

(38)

At high SNRs, the precoder asymptotically depends only on
the correlation . The precoder design problem is now equiv-
alent to maximizing , subject to
the power constraint (4). If is a scaled-identity matrix, this
is the standard water-filling problem [33]. For the nonidentity

, using the same analysis in Section V-A for the nonasymp-
totic case, the optimal precoder right singular vectors are given
by the eigenvectors of ; that is, . Again, denoting

, the problem can be recast as follows:

(39)

subject to

where for nonzero eigenvalues. Let
be the eigenvalue decomposition of ,

then . Noting that the
eigenvalues of are the same as those of , the trans-
formation does not affect the constraint in (39). Thus, by the
Hadamard inequality [34], is maximum when is
diagonal. This maximum implies that the optimal left singular
vectors of are the eigenvectors of . The optimization
problem now becomes

subject to

This problem is convex and can be solved exactly, using the stan-
dard Lagrange multiplier technique [32], to obtain the solution

(40)

where is chosen to satisfy the equality constraint
. The plus notation means that the ex-

pression takes the value inside the parenthesis if this value is
positive, otherwise it is zero.

Thus for the high-SNR limit, the optimal precoder has the
form

(41)

where the singular value matrix is obtained from the
water-filling solution (40) with diagonal elements as

. As SNR , this solution
approaches equal power distribution on all the eigenmodes of

that correspond to the nonzero eigenmodes of .

C. Discussion

Comparing the two limiting cases of the infinite (37) and
the infinite SNR (41), we see that in each case, the precoder

converges to a solution that depends on only one of the two
statistical channel parameters: either the channel mean or
the transmit correlation . When the channel becomes more
static, indicated by a high factor, the channel mean domi-
nates the precoder solution. At a high SNR, however, the fluc-
tuation in the channel becomes more pronounced; hence, the
transmit correlation, equivalent to the channel covariance, tends
to dominate the precoder solution. A parallel observation is that,
as increases, the precoder tends to drop modes until it be-
comes a single-mode beamformer, with an asymptotic direction
as the dominant right singular vector of the channel mean. On
the other hand, as the SNR increases, the precoder tends toward
full-mode beamforming on all eigenvectors of the transmit cor-
relation matrix with equal power allocation. These effects are
observed, provided that all other parameters are kept constant
when the variable of interest, the factor or the SNR, varies.
If both the factor and the SNR increase, then there exists a

factor threshold for single-mode beamforming that increases
with the SNR. An example of this threshold is given in the nu-
merical simulation Section VIII.
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VII. SPECIAL SCENARIOS OF THE PRECODER DESIGN

In this section, we analyze the precoder designs for two spe-
cial scenarios: when the channel has zero mean but is correlated,
and when the channel is uncorrelated with a nonzero mean. Pre-
coding for these two scenarios was previously studied in [20]
with a general STBC, and in [18] with an OSTBC, respectively.
We will analyze our results and show that both cases are cov-
ered. We also extend the latter case, precoding for an uncorre-
lated nonzero mean channel, to the general STBC and obtain an
optimal precoder solution without relaxation.

A. Precoding for Correlated Channels With Zero Mean

Consider a correlated channel with zero mean ,
corresponding to a correlated Rayleigh fading channel. When
the codeword distance product matrix is a scaled-identity
matrix, from (22), we have . Thus, the power con-
straint equation (23) becomes a standard water-filling problem,
as follows:

provided the matrix expression inside the parentheses is positive
semidefinite. The optimal precoder (28) has its beam direc-
tions given by the eigenvectors of and the power allocation
obtained via standard water-filling [33] on the eigenvalues of

. No numerical binary search is required for in this case,
and solving for the optimal precoder is simple.

With a nonidentity , from the original problem (15), we can
obtain a formulation similar to the asymptotic high-SNR case
(38). The result also reduces to having the left singular vector
given by the eigenvectors of , the right singular vectors given
by the eigenvectors of , and the power allocation obtained by
closed-form water-filling (40), without the necessity of a binary
search. This result agrees with the solution established in [20],
which was proven using Hadamard and geometric-arithmetic
mean inequalities.

B. Precoding for Uncorrelated Channels With a Nonzero Mean

We now consider an uncorrelated channel with a
nonzero mean, which can correspond to an uncorrelated Rician
channel, or to a channel estimate with uncorrelated error at the
transmitter.

1) Scaled-Identity : When is a scaled-identity matrix,
we have , and the power constraint (23)
becomes a simpler water-filling problem as

The precoder solution has its left singular vectors given by
the eigenvectors of —the right singular vectors of the
channel mean. The power loadings can be found using the inner
and outer algorithms, in which the computation is simpler in
this case as the eigenvalues in the outer equation (26) can now
be expressed explicitly in terms of . This result is similar to
the solution established in [18] for precoding with an OSTBC.

2) Nonidentity : For a nonidentity , we revisit the orig-
inal problem formulation (15) to obtain

subject to

To solve this problem, we note that the term in the ob-
jective function depends only on and . Apply the in-
equality [35], then without mod-
ifying the eigenvalues of or , the expression

is maximized when the
right singular vectors of are the same as the eigenvectors of

. Now, examine the trace term in . Applying the inequality
[34], then

is minimized when has the same eigenvectors as those of
. Noting that both inequalities place no constraints on

the eigenvalues, except for their relative order, both the equality
conditions can be simultaneously achieved by forcing the SVD
of to be

where is the eigenvalue decomposition
of . We now merely need to find the singular values of

. To do this, let , and the problem can be reformu-
lated in terms of as

subject to

where , and are the eigenvalues of .
This problem is convex and can be solved using the standard
Lagrange multiplier technique to obtain

where is the Lagrange multiplier satisfying the constraint
. can be found using an 1-D binary numerical

search similar to the inner and outer algorithms. The singular
values of are then . Thus, for this
CSIT scenario, we can also obtain a closed-form optimal
precoder solution for all STBCs.

C. Discussion

In both special cases when only the channel mean or the
transmit correlation is present, the precoder solution is signif-
icantly simplified. The precoder beamforming directions are
fixed and are given by the singular vectors or eigenvectors of the
present channel parameter, and the power loadings are obtained
by some form of water filling over its eigenvalues. In these
cases, closed-form optimal precoder solutions are available for
all STBCs, and no relaxation is necessary.
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VIII. DESIGN EXAMPLES AND NUMERICAL RESULTS

We now present design examples and simulation results
for several system configurations. We perform simulations
using two antenna setups: 2 1 and 4 1. The channel mean
and transmit correlation matrices are generated arbitrarily and
normalized according to (2), where the correlation matrix is
Hermitian and positive definite. These matrices are given in the
Appendix. The correlation matrix for the 2 1 channel has the
eigenvalues of [1.96, 0.04] and the condition number of 47.93,
representing a strong correlation. The correlation matrix for the
4 1 channel has the eigenvalues of [2.05, 1.48, 0.41, 0.06]
and the condition number of 34.2. In all systems, we choose
the factor to be 0.1, except when studying the effect of
on the precoder.

A. Precoders With an Orthogonal STBC

1) Precoder Design Examples With the Alamouti STBC: We
first show a precoder design example in a 2 1 system using
the Alamouti STBC [1]. The code is given as

We need to identify the value for in (16). For the min-
imum-distance design, , where is the minimum
distance in the signal constellation. Consider a square QAM
constellation with points for example, the average symbol
power is , thus .

For the average-distance design, assuming that each code-
word contains distinct symbols that are independent and
equally likely, we can rewrite (10) as

(42)

where the ratio factor results from averaging over only pairs of
distinct codewords. This expression applies to any signal con-
stellation of size . Since and are chosen independently,

. For a STBC that gives equal weight to all sym-
bols, it is plausible that for some . Hence,
the average-distance criterion usually produces a scaled-iden-
tity matrix . For example, the Alamouti code with quaternary
phase shift keying (QPSK) has , or .

2) Numerical Results: Fig. 2 shows the performance of a
2 1 system using the Alamouti code and QPSK modula-
tion. For this system, the minimum-distance and the average-
distance precoder designs perform exactly the same. The pre-
coding gain is around 2.2 dB at low and medium SNRs and
diminishes at higher SNRs. When the SNR increases, as dis-
cussed in Section VI-B, the precoder becomes increasingly de-
pendent on the transmit correlation and approaches equi-power
on the nonzero eigenmodes of . Thus, the value of water-
filling power allocation decreases at a high SNR, leading to the
diminishing precoding gain with the OSTBC. A similar effect
was observed from a mutual information analysis for a full-rank
correlation CSIT in [10].

Fig. 3 shows the performance for the same 2 1 system with
different QAM orders. The precoding gain of the minimum-

Fig. 2. Performance of a 2 � 1 system using the Alamouti code and QPSK
modulation, with and without precoding.

Fig. 3. Performance of a 2 � 1 system using the Alamouti code with various
QAMs, with and without precoding.

distance design is consistent over different constellation sizes,
whereas the average-distance precoding gain is reduced with
a larger constellation at a high SNR. With a larger constella-
tion, the number of minimum-distance codeword pairs becomes
larger, while at a higher SNR, the minimum-distance pairs be-
come more dominant in affecting the error probability. There-
fore, the minimum-distance precoder design results in more gain
than the average-distance design in this domain.

B. Precoders With a Nonorthogonal STBC

We continue with an example of a linear precoder design
with a nonorthogonal STBC. In general, our precoder design
works with all STBCs, including high rate codes which achieve
the diversity-multiplexing frontier such as [26], [27]. In this
example, we use the quasi-orthogonal STBC (QSTBC) [4],
[5] specifically. The name quasi-orthogonal results from the
groups of columns of this code being orthogonal to each other,
allowing simple ML decoding over pairs of symbols. The code
itself is nonorthogonal and provides partial diversity; however,
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it achieves a higher rate than an OSTBC for more than two
transmit antennas. We consider the following form of the
QSTBC:

In [22], a precoder exploiting channel mean feedback with the
QSTBC is derived, using an asymptotic analysis.

1) The Codeword Distance Product Matrix for the QSTBC:
For this code, the codeword distance product matrix (7) has
the form

where and
, with , where are symbols

in .
Assume that the symbols are part of a constellation . For

the minimum-distance design, is given by the case in which
there is only one symbol difference between the two codewords,
thus . For the average-distance design,
assuming that all symbols are independent and equally likely,
and that , (42) is also a scaled-identity matrix with

. In this QSTBC example, is a scaled-
identity matrix in both designs; hence, no relaxation is needed
to solve for the precoder, and the precoder right singular vectors
can be omitted.

Note that although the STBC diversity order, or the minimum
rank of , is 2 in this case, the precoder is not limited to rank
2. At each time instance, the precoder acts as a beamformer
on a separate column of the space–time code. Since there are
4 different symbols in each column, the precoder can form a
maximum of four orthogonal beams, one per symbol, matching
the statistically preferred directions in the channel. This beam-
forming effect causes the precoder rank to be independent of the
STBC diversity order. Rather, it depends on the number of dis-
tinct symbols in each column of the code. Only when the SNR
is not high enough, the precoder reduces its rank by dropping
modes.

2) Numerical Results: Fig. 4 shows the performance curves
for a 4 1 system using the QSTBC and QPSK modulation.
The result reveals that both the minimum-distance and the av-
erage-distance precoder designs perform similarly for QPSK
modulation, with a precoding gain of around 1.7–2 dB. Also
shown is the performance of a precoder that has its rank limited
to 2. This precoder gain reduces rapidly as the SNR increases;
it eventually performs even worse than without precoding at
very high SNRs. This example illustrates that the precoder rank
should not depend on the STBC diversity order.

Fig. 5 shows similar performance curves for the 16 QAM
constellation with Gray bit mapping. In this case, the min-
imum-distance precoder performs slightly better than the
average-distance design, due to the larger constellation at a

Fig. 4. Performance of a 4 � 1 system using the QSTBC and QPSK
modulation, with and without precoding.

Fig. 5. Performance of a 4 � 1 system using the QSTBC and 16QAM, with
and without precoding.

high-SNR effect, which is also observed in Fig. 3. The dif-
ference is small, however, at around 0.5 dB. With this larger
constellation, the precoding gain is higher; the minimum-dis-
tance precoding gains are around 1.8–2.5 dB.

C. Effects of the Factor and SNR

We now examine effects of the factor and the SNR on the
number of beamforming modes of the optimal precoder. From
the asymptotic analyses in Section VI, the precoder approaches
a single-mode beamformer as increases. As the SNR in-
creases, however, it tends to become a multimode beamformer.
Hence, there exists a factor threshold that increases with the
SNR, above which the precoder is a single-mode beamformer.

Fig. 6 shows the regions of single- and multimode beam-
forming, as a function of the factor and the SNR, for the 2

1 system using the Alamouti code and QPSK modulation.
There are two noticeably different effects in this figure. In the
high-SNR high- factor domain, single-mode beamforming is
because of high alone. At lower SNRs, however, single-mode
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Fig. 6. Single-mode and multimode beamforming regions for a 2� 1 system.

beamforming is also the result of the low SNR, when the pre-
coder drops a mode due to insufficient power. The switching
point between these two effects depends on the specific channel
parameters (mean and correlation). Therefore, the precoder is a
multimode beamformer only at a sufficiently high SNR with a
sufficiently low factor.

D. Discussion

In the performance simulations, we use channels with a very
low factor . The precoding gain will increase with
a higher factor, similar to having a better channel estimate at
the transmitter. The number of receive antennas also affects the
precoding gain; a channel with the same transmit correlation but
with more receive antennas tends to possess a higher gain.

Note that the precoding gain, while dependent on the op-
erating SNR, also depends on the channel parameters—the
specific channel mean and transmit correlation matrices. Some
channels favor precoding with larger gains, while for others,
the precoding gain is less significant. A variety of factors can
contribute to this effect: for example, the condition numbers of
the mean and correlation matrices, how closely the eigenvectors
of these matrices align. This effect is not studied here and can
be a subject for further research.

The precoding gain is attributed to two factors: the optimal
beam directions, which achieve an array gain, and the water-
filling-type power allocation among these beams, which also
results in an SNR advantage. Note that precoding on channel
statistics obtains only antenna array gain, but not diversity gain.
This lack of diversity gain is a property of statistical channel
information, with which the precise directions of each channel
realization are unknown to the transmitter. The STBC, therefore,
plays an important role here in capturing the channel diversity.
When the CSIT is perfect instantaneous information, however,
the precoder can also deliver a diversity gain.

IX. CONCLUSION

We have designed a linear precoder to exploit a statistical
CSIT—the channel mean and transmit antenna correlation—in

a space–time coded MIMO system. We use convex optimiza-
tion frameworks, based on minimizing the Chernoff bound on
the PEP for minimum and average codeword distances, to de-
rive analytical precoder results for both systems with orthog-
onal and with nonorthogonal STBCs. The precoder right sin-
gular vectors act as the input shaping matrix, matched to the
eigenvectors of the ST codeword distance product matrix. The
left singular vectors are the beam directions matched to the
channel, based on the CSIT. The singular values represent the
beam power allocation, which depends on both the STBC and
the CSIT. We design a dynamic water-filling algorithm to es-
tablish the optimal beam directions and the optimal power al-
location, both of which evolve with the water-filling iterations
and are functions of the SNR. The algorithm involves simple
and efficient binary searches to find the Lagrange multiplier.
Asymptotic analyses of the precoding solutions reveal that the
precoder depends primarily on the channel mean at high fac-
tors, and on the transmit correlation at high SNRs. Simulation
results confirm valuable precoding gain, which depends on the
channel mean and correlation, the number of antennas, and the
SNR, besides the codeword distance of choice. For a large signal
constellation at a high SNR, the minimum-distance precoder ob-
tains more gain than the average-distance design. The precoding
gain with this statistical CSIT is an array gain, attributed to the
optimal beam directions and the water-filling-type beam power
allocation. The precoder, therefore, exploits the CSIT by spa-
tially matching the transmit signal to the channel to achieve an
SNR advantage.

Although the analysis in this paper has focused on the sta-
tistical CSIT, the precoder design can be applied to other CSIT
formulations, such as a channel estimate with a known error co-
variance. In [25], we discuss this relationship and also formulate
a framework combining both the channel statistics and poten-
tially outdated channel measurements to create a robust CSIT.

APPENDIX

A. Derivation of the Bounds on in the Outer Algorithm

To derive the bounds in (27), apply Weyl’s theorem [34]
to the

left-hand-side expression in (26), we obtain the following
general function bounds when modes are
dropped:

Equating each expression to , we obtain a quadratic equation,
from which the corresponding value for in (27) is derived.
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B. Solving the Trace Relaxation Problem

To solve (34), again form the Lagrangian and differentiate
with respect to to obtain

where is the Lagrange multiplier associated with the equality
constraint. Let be the Hermitian matrix such that

, then the above quadratic matrix equation has the solution

where

Now can be written as

and the product becomes

The Lagrange multiplier must satisfy the equality constraint
in (34). Similar to the orthogonal STBC case, we solve for
in two steps. We first assume that is full rank and solve the
equation . If the resulting is not PSD, then we
drop the weakest mode of and resolve for , using the equa-
tion , and keep dropping modes until is
PSD. Note that in this case, we cannot write the eigenvalues of

explicitly as functions of to obtain an equation similar
to (24). However, since the eigenvalue sum is monotonic in ,
similarly, can be found by performing an 1-D binary search
in each step. The bounds on for the equation with modes
dropped are given by

(43)

where for the upper bound

and for the lower bound

To derive the upper bound, we use the inequality
and further

obtain an upper bound on as

where we have used the inequality
[35]. Now we have

where (a) and (c) follow from [34], (b) fol-
lows from [35], (d) follows
from the definition for , and (e) follows from

. The upper bound (43) on can then be found by
solving

with and specified above. The lower bound is derived
similarly.

C. Numerical Simulation Parameters

The channel parameters used in the numerical simulations are
listed below.

For the 2 1 channel

For the 4 1 channel (numbers are rounded to two digits
after the decimal point)
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