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Abstract—We study the optimum transmission scheme that ratio, the PDF of the channel phase shift, and the SNR (Signal
maximizes ergodic capacity of & x 1 multiple-input single-output  to Noise Ratio). The optimum scheme can be divided into two
(MISO) system, when the channel knowledge at the transmitter a1aq0ries depending on the channel gain ratio factor.df th
is characterized by a known gain ratio and a known probability o . LI
density function of the phase shift between antennas. Such achgnnel gain s ur_lequal (i.e. the ratio is d'ﬁ_erem fromtihj
channel scenario can arise in a forward link at the base station Optimum scheme is to always do beamforming on the mean of
when there is a single direct path propagation. We show that the the channel phase shift, with power at each antennas adjuste
optimum transmit solution is beamforming on the mean value of according to the channel gain ratio. When the two antennas
the phase shift with unequal power input to the antennas. When a6 equal gain, then the optimum scheme includes, but is
the phase is completely unknown, the solution reduces to a single L . . . .
antenna transmission. not limited to, beamforming. For this case, optimum signals

from two transmit antennas can also be designed according
to a given full-rank covariance matrix. In both cases howeve
I. INTRODUCTION when there is no phase knowledge between the two antennas at

Recent works in multiple-input multiple-output (MIMO) the transmitter, the optimum scheme reduces to single aaten
wireless channel capacity and coding have shown that chanti@nsmission.
knowledge at the transmitter, in either full or partial fangan ~ In the next section, we give details about the channel
increase the channel capacity and performance consigerappdel and assumptions. Section 3 sets up the problem based
[6]-[12]. While zero-mean channels have been largely tf ergodic capacity and summarizes the main results. The
focus of the existing work, it is also often found in practic@ptimum signal phase shift is then established in Section
that the wireless channel hasian-zero meaf2], [3]. In other 4. Section 5 presents results for the optimum signal power
words, a finite K factor, which is the ratio of the power inallocation and covariance magnitude for both cases of walequ
the fixed component to that of the variable component in ti@d equal channel gains. Section 6 gives some simulation
channel, exists. This motivates the study of transmit seisenexamples of the results being applied specifically to Ricean
for K-factor channels. phase distribution [14], [17]. We close with some conclgdin

In this paper, we study a limiting case when the K factdemarks in Section 7.
is infinity, which corresponds to a direct dominant path prop Notations used in this papetrZ is expectation,(.)* is
agation. The results however could be applicable to channebmplex conjugate and)* is the optimum value.
with high K factors, say 20dB, which occur in practice [3].
The receiver is assumed to know the channel perfectly. The
transmit channel knowledge model assumes a perfectly known
antenna gain ratio, including equal-gain, and a randomephas Consider a MISO system with two transmit antennas.
shift with a known probability density function (PDF). ThisAssuming a single direct propagation path and narrowband
scenario is typical in the forward link at a base station witAntenna array [2], the channel can be depicted as in Figure 1.
direct path propagation and large spacing-(10 carrier The propagation paths from two antennas differ by a channel
wavelengths) between the two transmit antennas. This mogain ratioo and a phase shifp
of channel knowledge differs from models considered in the i
aforementioned work, where long-term first and second order ha(t) = ae’®h(t) ,

statistic information of the channel are usually assumed, {here,, (+) andhs (t) are the channels seen from the first and
gether with complex Gaussian distributed channel coeffisie second antennas, respectively. Assuming high K factor,ame c

The chanpel cogfficients in this mo‘_’e' represgnt a nongaldiQuppress the time dependence of the channel amplitudes and
wireless link which has a phase shift uncertainty. write the channel simply as a row vectdr, hs).

We derive the optimum transmission scheme from the €| et d be the distance between the two antenabe the
godic capacity point of view, based on the known channel gaérﬁgle of departure anil. be the carrier wavelength, the phase
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Corp. and Sprint Corp. - Ao :

Il. CHANNEL MODEL
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distribution specifically for numerical simulations. The&&an
phase distribution can be parameterized to cover the range
from uniform phase distribution (i.e. unknown phase shift)
to delta function distribution (i.e. exact phase knowlgdge
and will be discussed in more details in the numerical result
hy = ahie?® section.

Y ~.__,/§;mg I1l. PROBLEM OVERVIEW
A. Problem Setup

Fig. 1. Single path propagation model. We use the ergodic channel capacity under the sum power
constraint on transmit antennas as the optimization aiter

Due to the | dist 10 lenaths) betw h Since the receiver has full knowledge of the charjhel k2],
ue to the large distance~( 10 wavelengths) between Cthe ergodic capacity of the channel is achieved by Gaussian

LW? ante:nas ?t h|gh_ Cﬁ.rr':lr frequbelzngles, the phtas; STHbut signal [z1 x2]T with zero mean [1] and &ovariance
etween two antennas is highly variable in response to srqﬁe trix R, which satisfies

change in the angle of departure. For example, if the ang

of departured is assumed to be uniformly distributed within max Elog(1 +~vhR,,h*)
[-7/3,7/3] at the basestations, together with Doppler spread Raa
on f and possible changes or jitters of carrier frequencies, the S.L. t(Ry) =1, (1)

distribution of ¢ will look almost uniform betweer—, 7].
The difference in antenna gains (when# 1) is caused by

the local scattering from mounting structure (walls, rop#

...) hear the antennas and is often found in practice. While

this gain ratioa also exhibits a dependence on the angle h=]1 aej¢],

of departure, which is a function of the antenna pattern, its

sensitivity to the departure angle is much less than thatef twhere0 < o < 1. Taking into account the total transmit power

phase shift. We therefore assume that this gain ratio can dmnstraint t(R,,) = 1, the transmit signal covariance matrix

where v is the total signal to noise ratio with appropriate
normalization.
We can absorla; into v and write the effective channel as

tracked and measured accurately. R.. can be expressed as
In this study, we assume that the receiver has perfect knowl- 1 e—it
edge of the channel, while the transmitter has some partial R, = o, 2P (2)
307V 1=

channel knowledge. The transmitter can obtain the channel
in the forward path by estimating the reverse channel in TDRere 5 is the fraction of total powerallocated to the first
(Time Division Duplexing) systems, or through feedbackriro antenna, ) is the signal phase shiftand p is twice the
the receiver in FDD (Frequency Division Duplexing) systemsnagnitude of the covariandeetween signals transmitted from
In both cases, there is likely to be an error in the estimadio® the two antennas defined as

to the time offset or lag between the channel measurement and

its use, hence the transmitter can only obtain partial chlann p = 2|E[z125] — E[z1]Elx3]| = 2|Elz1235]]

knowledge. The channel can be characterized by antenns gai the last lit its f the sianals havi
and a phase shift between the two antennas. Due to highW ere e 1ast equalily results from the signais having 2ero
an. In the followings we will cajp simply as the covariance

factor, the antenna gains are likely to be very stable and A ud
be estimated accurately. We therefore assume perfectlyrknomagnI ude. . . _
The three variables), v and p define the transmission

« andh;. The antenna phase shift, however, is highly variable h h ; h iables b
due to the large separation between antennas, leadingote erpcheme. The constraints on these variables become
in the phase estimate. We assume the PDF of the phaseshift 0

< <1
is known but not the exact value of the phase. This phase shift ; g ;
distribution is circular between7 andx. The precise shape —m =Y =7
of the distribution depends on the channel characterisincs 0 < p < 2¢n(l-n). (3)

the measurement method. A Dirac delta distribution fumr:tiQF b q foll . diately its definiti
corresponds to exact phase knowledge, whereas a unifo H,]e ounds ony Toflow immealately irom 1ts definition,

distribution means no phase information. In fast time vagyi whereas the bounds ofi result from a predefined domain

channels, the phase measurements are more error prone, hﬁ]ﬁéhe signal phase shift. The upper bound moomes from

the distribution will tend toward uniform. e covariance relation

Our analysis requires that the phase shift distribution is |Elz125]| < /E[r1|2E[2s]? 4)
symmetricaround the mean,. The exact power allocation at
the two transmit antennas does depend on the actual PDFafzero-mean random variables. This bound can also be ob-
the phase shift. We first carry out the analysis for generaseh tained via the positive semidefinite property of the covare&a
PDFs, and then apply the analysis results to Ricean phasatrix R,..
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With these channel and signal models, and the assumptisherep = (1 — a?)n + ~va? +1 andy = ¢o + . The
that the phase distribution is symmetric around its megn mutual information expression can be rewritten as a functio
the average mutual information can be written as of z = cos 1y = cos(¢o+1). The optimization can be carried

" out with respect ta: instead ofy, then the optimum value™*

1 - Elog(l +7hR..h’) ©®) can be derived from™*. If the optimumz* is not1 or —1, then

= /10g {7(1 —a?)n 4 yapcos(¢ + o) +vo? + 1| f(¢)de  there will be two different values of the optimum phase shift
— ¥* within the rangg—m, 7] that satisfycos(¢* + ¢g) = 2*, as

where ¢y = ¢, + ¢. Note that f(¢) is the phase PDF cosine is an even function. This in turn violates the unigssn

function translated to be centered at its mean, that(is) Of *. Therefore the optimum value af must be either or

is symmetric around zero. In the following sections, we wilt-1, which leads to the optimum signal phase shiift= —g¢

use this translated phase PJFy) in all derivations. We are Of ¢* = m— ¢y respectively. This is the result of the symmetry

interested in maximizing (5) by choosing ¢ and p subject Of the channel phase shift distribution. O

to the constraints (3). The specific value for)* depends on the phase shift distri-
bution functionf(¢). The choice can be made by examining

B. Summary of Results the mutual informatiorf at the two boundary values = —¢

andy = 7w — ¢g, then choose the value which makesarger.

The optimum transmission scheme is defined by the transmit,, b = — gy, the average mutual information (5) becomes

covariance matri®R .., which in turn is defined by, ¢» and
p. These are found based on the known channel parameters at Tloe _ 2/’T log(p + yapcos ¢)f(¢)d¢
the transmitter, which are the channel phase shift didtahu W==do 0 '

f(#), the channel gain ratia and the SNRy. The main results A similar expression can be obtained for the céise 7 — .

can be sumr.nanzed' as o ] The difference between average mutual information at thee tw
« The optimum signal phase shift" is the negative of the candidate values fop* is

estimate channel phase shif or that plusr, depending

on the specific phase shift distributigii¢). The* value AT = TZlp=—gy — Llp=n—d¢0
is independent ofr and~y. This is derived in Section IV. _ 4 “1 P+ yapcos ¢ d
« When the channel gain is unequal 1), the opti- = ; Og(pi_ 7apcos¢)f(¢) ¢

e logarithmic expression is anti-symmetric aroumng?,

unequal power allocation to the two transmit antennas. ) . )
q P erefore the above difference can be rewritten in the form

The optimump* is a function ofp*, andn* is a function
of the phase shift distributiofi(¢), the channel gain ratio /2 2p T
a and the SNRy. This is derived in Section V-A. Al = 2/0 10g<p _ Vo&pcow_l) [f(¢)_f(¢+ 5)}‘1(?5 ~

o When the channel gain is equal & 1), the optimum Si the | thmi ion in the ab int i
solution can either be beamforming or space-time codin Ince the logarithmic expression in the above integral 1S

with correlated signals. In this casgyanishes in the av- n ”'”ega“"e within the iptegral range, we can obtain tg.e.si
erage mutual information expression (p).is a function .Of AT simply without having to evalugte thg integral explicitly
of f(¢) and~, thenn* can be chosen arbitrarily within it f(¢) —f(_(i_H— 5) _does not change sign wn_h[h_g ¢ < 7T./2'
its range subject to the inequality gri in (3). This is More specifically, if the translated phase distributiondiion
analyzed in Section V-B ' f(#) is monotonous within the rangé < ¢ < , then the

choice amongsp = 0 and ¢ = w, which makesf(¢) larger,
IV. OPTIMUM SIGNAL PHASE SHIFT* corresponds to the optimum* value being—¢q or m — ¢
i ) o respectively. This monotonicity applies to the Ricean phas
The optimum _S|gnal phase shift* is mdepende_nbf the  gistribution which we use in numerical simulations laténc®
channel gain rqtl(n ar_1d the SNRy, and hence, is treatedf(d)) is circular within—r < ¢ < , we can always rotate the
separately in this section. , distribution so thatf(0) > f(r). Therefore without loss of
Theorem 1:The optimum phase shift* between the trans- yonerality, we assume that the channel phase shift disigibu

mit signals from two antennas is the negative of the estithatl g ,ch that the optimum signal phase shift/is = —¢; in
channel phase shifty or that plusr, depending on the channeli,a next section.

phase shift distributiory (¢). That is

mum transmission scheme is always beamforming wilgj
t

Y =—¢g or P*=7—¢y. V. OPTIMUM SIGNAL POWER7* AND COVARIANCE
Proof. The original problem (1) is a convex optimization MAGNITUDE p*

problgm and h.ence hils a unique solution, which leads tOIn this section we will derive the optimum set gfandp. It
a unique solution ofy*. Due to symmetry of the phase

L : turns out that the cases of unequal channel gair:(1) and
Idr:]:cgrr'r?]l:t'g; af;om (5), we can rewrite the average mutuaevqual channel gaim(= 1) have significantly different impact

on the optimumn* and p*. While the solution of unequal

I /Tr log[Pz + 2pyaup cos o cos ¢ + channel gain case can be applied to the equal case, the latter
0 has a larger solution space. Therefore we analyze these two
v?a?p?(cos® 1y + cos® ¢ — 1)] f(¢)do cases separately.
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A. Unequal channel gains Hence the optimum transmit strategy is to loeamforming

We assume without loss of generality that the first antend the time, with the power at each antenna adjusted aqegrdi
always has a higher gain than the second antenna,cthss t© the channel parameters. The optimum covariance matrix
strictly less than 1. The optimization problem (1) now beesm Rz @lways has rank one in this case.

1 (6) Replacing the optimum* into the average mutual information
in (6), the problem then becomes finding € [0, 1] to
maximize the following expression

st. 0 <

e / log[1(1 — a®)n + apycos é + 7o + 1] f(6)do Optimum power allocation 7*
0

= 7n

0 < p

<
<

2yv/n(1—mn) .
Optimum signal covariance magnitude p*

1
Theorem 2:With o < 1, the optimum magnitude of the  Elog[(1 — o)y + 2a+/n(1 —n)cos ¢ + a® + ;] :

covariance between the transmit signals from the two aatenn o ) X
is Since the above expression is concave)jrthe optimumn*

oF =2 /777(1 ). @) is the solution of
. 1—a?+ —+=21_qcos
Hence the transmit signals has the form Vn(1-n) ¢ } —0. (9
1 .

E
2y = Ce—T%0g, ®) {(1 —a?)n+2ay/n(l —n)cosp+ a? + 5

The optimumn* is a function of f(¢), «, .

with ¢ given by
1 —
(=4 —21. B. Equal channel gains

N . : , :
In other word, the optimum transmission scheme reduces toIn this section we treat the case= 1. With the_ opUmum
nal phasey* = —¢g, the average mutual information

simple beamforming with unequal power at each antenna. SIg
Proof. Problem (6) is a convex optimization problem. For ecomes B
the Lagrangian functional I 2/ log(m 084+ 1)f(¢)dqb |
= Fl 1—a? . 24 . 0_ -
£ o h( o)+ apycos +yo”+ ] Notice that the signal power allocatiom does not appear
—Alp =2V =), in this expression as a result of the equal channel gain.

where\ > 0 is the Lagrange multiplier. Then the optimizers-rheref_ore in this case, the covariance m_agnltwdean be
und independently ofy and the maximization can be taken

n* andp* are the solutions of the equations formed by settiHc <, -1
the partial derivatives of£(n, p,\) to zero. In particular, ero<ps<l.
setting the partial derivative with respect toto zero leads

o Optimum signal covariance magnitude p*

E

(1 —a?) } B 2n—1 Since the above expression is concavepjrthe optimump*
v(1 = a?)n + apycos ¢ + 1 + ya? nl—mn) is the solution of

Fora < 1, the left-hand-side of the above expression is strictly oz = 2/ &f(@d(b =0. (10)
greater than O for all distributions gfas the expression under 9p o pycosd+a+1

the expectation is always positive. Th¥s > 0 andn* > % The optimump* depends on the specific phase distribution
Since\* is strictly positive, it means that the upper constrainf(¢) and the SNRy.

onp is tight (Karush-Kuhn-Tucker conditions [4]), henge= ) )

2./n(1 — n). Another way to arrive at this result is by equating®Ptimum power allocation 7*

the partial derivative ofZ(n, p, \) with respect to to zero to
get

0z

Here the optimump* andn are only related to each other
through the inequality
_ -y cos ¢ } 0.

8_p_E{'y(l—a2)77+ap'ycosqb+l+7a2 pr=2yi(l—mn). 11

Therefore the average mutual informatidns increasing ip Hence one can choose any power allocation vajuéhat

at the optimum point. This means the optimymis achieved satisfies this relation and design the signal according ¢o th

at its maximum value. obtained optimunR ... The rank of this covariance matrix is
This maximum covariance magnitude can be achieved ot restricted to be one as in the unequal channel gain case.

when the signal sent from one antenna is a scaled version#€ choice ofy*, which influences the rank &, therefore

the signal sent from the other antenna, following the egualican be divided into two general categories:

condition on (4). Applying the phase shift result of Theorem « R, rank one - BeamformingHere we pick the value of

the transmit signals become, = (e~ 7/%0x,. The covariance n* that meets the bound (11) with equality, which gives
magnitude becomep = 2E[x123] = 2¢n = 24/n(1 —n), L1
which leads to the value af as given in the Theorem. O =51 E VL= (0)?). (12)
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A. Unequal channel gains

o

ANOO

We solve equation (9) numerically to fingr. It turns out
that the SNRy has a very little effect on*, which can be seen
from this equation as/- can be ignored for reasonably large
values of~. Simulation results show that we get practically
the same value of* for all v+ > —20dB. Figure 3 shows the
plot of the optimum power allocation* as a function of the
channel gain ratiev and the phase estimate qualityat SNR
~ = 10dB.

Whenn = 1, it means that only one antenna is used.
e Y A W This is the case when no phase estimate exjsts=(0). In
0 ‘ ey such situations, using only the stronger antenna to transmi
Phase shift g (1 rads) is optimum regardless of the actual value @ < 1 here).

As the phase estimate quality increases, the power distgbu

to both antennas unequally. The scheme approaches transmit
maximum ratio combining (MRC) beamforming, which is op-
This is the same solution as the optimum scheme sfipum when the channel is known perfectly at the transmitter

unequal channel gain case (7). The optimum signal desiEHe MRC beamforming power allocation is a function cof

TR

=
4
T

() with zero mean

[N
T

Pdff,,

o
«
T

Fig. 2. Ricean phase distribution

is thenzy = Ce /%02, where( is given by and is given as )
= . 14
¢ = p . "IMRC 1+ a2 (14)
1+/1-p2

Figure 4 shows slices of the optimum power allocation

o R,, full rank: This can be done by picking a valueversus the phase estimate quality and channel gain ratio.
of n that satisfies the inequality (11) strictly. The signain the power versus phase estimate quality plot, the power
design problem then becomes finding a coding scherallocations levels off for 3 > 3 approximately at all channel
for the given covariance matriR,,. A specific choice gain ratios. These levels are the MRC power allocations at
isn = 1, which makes the signals from the two antennate corresponding channel gain ratio The same effect is
have equal power. The optimum signal then has to beflected in the power versus channel gain ratio plot. The
designed such that; and z» have identical Gaussianpower allocation plots fo > 3 are almost indistinguishable,
distributions with a correlation factor equal pd/2. and correspond to a plot of the MRC power allocation (14)

As a special case for both of the above categories, whegrsusa. Thus practically, MRC beamforming can be close
there isno phase estimatéequivalent to uniform phase shiftto optimum even at imperfect phase estimates.
distribution), then the optimum solution jg* = 0, which
means sending independent zero-mean Gaussian signals fﬁ’.”Equal channel gains

two antennas with the only constraint being that their pewer i i ) ) D
add up to one. Using a single antenna and putting all theSolving equation (10) with the Ricean phase distribution by

transmit power there also achieves the capacity with Aiyimerical means, we obtain the plot for the optimpmin

randomness, hence single antenna transmission is pldaferlﬂgurfe 5. The value of = 1 meanls geamformw;g _\Nhelre S|gnfal
in this case. That isg* = 1. sent from one antenna is a scaled version of signal sent from

the other, whereas = 0 means independent signals from the
two antennas.
VI. SIMULATION EXAMPLES
We use Ricean phase distribution for the channel phase shift

in the simulations. This distribution arises from the phage

a constant phasor plus random zero-mean complex Gaussian

noise with equal variance on the real and imaginary partk [14

[17]. Thephase estimate qualitan be conveniently described

by the Ricean factoff. Assuming an estimated meayg with

a given estimate qualitg, and denotings = ¢— ¢, the phase

shift distribution function is

_52

fa(¢) = 62—71_{1 + /7B cos (;5662 cos” § [1 + erf(( cos gﬁ)] } (13)

If 3 =0, the phase distribution is uniform, corresponding to
no phase estimate. Wheh— oo, the distribution converges 05

to the Dirac delta function, which means that the estimate is Channel gain imbalance a1 0 1S esimae qualy B
exact. A plot of the phase distribution with estimated mean

¢o = 0 at various values of is given in Figure 2. Fig. 3. Optimumn* in unequal channel gain case at SNR=10dB.

[

o
©

o
©

o
3

o
o

Optimum power allocation n

o
o
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o
©

Portion of total power to stronger antenna
o
~
a

— a=0
a=0.3

--a=05 ||
a=0.7 |

— a=0.99

0 1 2 3 4
Phase estimate quality B

1 <

5

(a) Power versus phase estimate quality

0.951 T

Signal correlation magnitude p

SNRy (dB)

-10 0

1

Phase estimate quality B

Fig. 5. Optimump* in equal channel gain case.

o
©

and the capacity with perfect phase estimate is

4
©
5

Cr=log(1+ (1+a%)y).

o
©
T

If we do not have the partial channel knowledge at the

Portion of total power to stronger antenna
o
~
o

07 transmitter and send independent Gaussian signals withl equ
06550 power from the two antennas, the average mutual information
p=05 \ obtained is
0.6 4 9
--p=1 \ 1+«
0.55 p=2 - quzlog(l—i— 5 'y) )
— B=23 \
03 02 0.4 06 038 1 Thus the capacity, or spectral efficiency, gain with partial

Channel gain imbalance a

channel information in this case depends on the quality ®f th
phase knowledge. At high SNRs, the spectral efficiency gain
is an additive constant and has a range as

(b) Power versus channel gain ratio

Fig. 4. Optimum power allocation for unequal channel gain.
1 —log(1+a?) < Cgain<1 (bps/iH2 .

In case of a beamforming solutioR(, rank one), the In terms of SNR advantage at the same transmission rate, the
power split between the two antennas (12) is regulated decogain is
ing to the phase estimate qualifiyand the SNRy. A plot of 5
the optimum power allocation* versus the phase estimate 101log;o(1 + @) < SNRyin < 3 (dB) .
quality 3 at various SNRs is shown in Figure 6(a). Since the | Figure 7 we show the capacity and mutual information at
roles of the two antennas here are symmetric, we only shQWrious channel knowledge for both unequal and equal channe
values such thag* > 0.5. The lines in this plot correspond gain cases. The spectral efficiency gain depends on the ehann
to the edge of the surface in Figure 3at= 1 at different gain ratio and the quality of the phase knowledge. The urlequa
SNRs. Notice that at this edgg; depends quite significantly channel gain plot illustrates that the knowledge of chaga@i
on the SNR. is valuable, even when the channel phase shift is unknown

If the phase estimate quality is abovea certain threshold, (3 = 0). The power allocation to the two antennas can be
which is a function of the SNRy, then the integral in (10) yegulated according to the known channel gain ratio to aehie
is always non-negative fof < p < 1, which leads to g higher spectral efficiency than that obtained by indepeinde
only beamformingbeing optimum. In this particular case, theyng equal power transmission. For equal channel gain case,
beamforming corresponds f¢ = 1 andy* = 3, that is, both on the other hand, some phase knowledge is required to
antennas transmit with equal power. This threshold is qadbttgain spectral efficiency over independent and equal power
in Figure 6(b). transmission from the two antennas.

C. Capacity comparison with and without channel knowledge VII. CONCLUSION

In this section we provide a quantitative analysis of thegai e have studied x 1 MISO channels with partial transmit
in capacity obtained by the partial channel knowledge at t§8annel knowledge characterized by a known channel gain ra-

transmitter. For both cases of unequal and equal channel g& @nd known phase shift PDF. The optimum signaling scheme
the capacity with no phase estimate available is is shown to be beamforming on the estimated channel phase

shift with per antenna power adjusted according to the known

Co =log(l+7), parameters. While in the analysis we assume that the channel
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(b) Phase estimate quality threshold above which only beamformi

Fig.

coefficients have fixed amplitudes, the same results alsky apRs
to channels with high K factors, where the amplitudes of the
channel coefficients can be estimated and is known, but t

AR — SNR =-10dB
AN SNR = 0dB 1
N --- SNR =10dB

o
©

o
3

Optimum power allocation n
o
~
al

0.5 : : : .
0 0.2 0.4 0.6 0.8 1
Phase estimate quality B

(a) Portion of the total power allocated to the first antenna in
beamforming.

14

=
N
T
.

Beamforming only region

[
T

o
[
:

o
o
T

0.4r

Phase estimate quality B threshold

02 Beamforming/S-T coding region

0 ‘ ‘ ‘ ‘ ‘
-10 -5 0 5 10 15 20
SNRy (dB)

is optimum.

6. Equal channel gain case.

channel phase is unknown and random. In such situatio

simple beamforming scheme is optimum from the ergodijto]
capacity point of view. Partial channel knowledge therefor

can help to simplify the transmission scheme significaathy

at the same time provides a spectral efficiency gain of up to 1
bps/Hz or a SNR advantage of up to 3dB using two trans
antennas.
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