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Abstract— We study the optimum transmission scheme that
maximizes ergodic capacity of a2×1 multiple-input single-output
(MISO) system, when the channel knowledge at the transmitter
is characterized by a known gain ratio and a known probability
density function of the phase shift between antennas. Such a
channel scenario can arise in a forward link at the base station
when there is a single direct path propagation. We show that the
optimum transmit solution is beamforming on the mean value of
the phase shift with unequal power input to the antennas. When
the phase is completely unknown, the solution reduces to a single
antenna transmission.

I. I NTRODUCTION

Recent works in multiple-input multiple-output (MIMO)
wireless channel capacity and coding have shown that channel
knowledge at the transmitter, in either full or partial forms, can
increase the channel capacity and performance considerably
[6]-[12]. While zero-mean channels have been largely the
focus of the existing work, it is also often found in practice
that the wireless channel has anon-zero mean[2], [3]. In other
words, a finiteK factor, which is the ratio of the power in
the fixed component to that of the variable component in the
channel, exists. This motivates the study of transmit schemes
for K-factor channels.

In this paper, we study a limiting case when the K factor
is infinity, which corresponds to a direct dominant path prop-
agation. The results however could be applicable to channels
with high K factors, say 20dB, which occur in practice [3].
The receiver is assumed to know the channel perfectly. The
transmit channel knowledge model assumes a perfectly known
antenna gain ratio, including equal-gain, and a random phase
shift with a known probability density function (PDF). This
scenario is typical in the forward link at a base station with
direct path propagation and large spacing (∼ 10 carrier
wavelengths) between the two transmit antennas. This model
of channel knowledge differs from models considered in the
aforementioned work, where long-term first and second order
statistic information of the channel are usually assumed, to-
gether with complex Gaussian distributed channel coefficients.
The channel coefficients in this model represent a non-fading
wireless link which has a phase shift uncertainty.

We derive the optimum transmission scheme from the er-
godic capacity point of view, based on the known channel gain

Mai Vu’s work was supported in part by the Rambus Stanford Graduate
Fellowship. This work was also supported in part by grants from the National
Science Foundation (Grant Nos. CCR-0241919 and CCR-0241921), Intel
Corp. and Sprint Corp.

ratio, the PDF of the channel phase shift, and the SNR (Signal
to Noise Ratio). The optimum scheme can be divided into two
categories depending on the channel gain ratio factor. If the
channel gain is unequal (i.e. the ratio is different from 1),the
optimum scheme is to always do beamforming on the mean of
the channel phase shift, with power at each antennas adjusted
according to the channel gain ratio. When the two antennas
have equal gain, then the optimum scheme includes, but is
not limited to, beamforming. For this case, optimum signals
from two transmit antennas can also be designed according
to a given full-rank covariance matrix. In both cases however,
when there is no phase knowledge between the two antennas at
the transmitter, the optimum scheme reduces to single antenna
transmission.

In the next section, we give details about the channel
model and assumptions. Section 3 sets up the problem based
on ergodic capacity and summarizes the main results. The
optimum signal phase shift is then established in Section
4. Section 5 presents results for the optimum signal power
allocation and covariance magnitude for both cases of unequal
and equal channel gains. Section 6 gives some simulation
examples of the results being applied specifically to Ricean
phase distribution [14], [17]. We close with some concluding
remarks in Section 7.

Notations used in this paper:E is expectation,(.)∗ is
complex conjugate and(.)? is the optimum value.

II. CHANNEL MODEL

Consider a MISO system with two transmit antennas.
Assuming a single direct propagation path and narrowband
antenna array [2], the channel can be depicted as in Figure 1.
The propagation paths from two antennas differ by a channel
gain ratioα and a phase shiftφ

h2(t) = αejφh1(t) ,

whereh1(t) andh2(t) are the channels seen from the first and
second antennas, respectively. Assuming high K factor, we can
suppress the time dependence of the channel amplitudes and
write the channel simply as a row vector[h1 h2].

Let d be the distance between the two antennas,θ be the
angle of departure andλc be the carrier wavelength, the phase
shift between two antennas is given by

φ = 2π
d

λc
sin θ .
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Fig. 1. Single path propagation model.

Due to the large distance (∼ 10 wavelengths) between the
two antennas at high carrier frequencies, the phase shift
between two antennas is highly variable in response to a small
change in the angle of departure. For example, if the angle
of departureθ is assumed to be uniformly distributed within
[−π/3, π/3] at the basestations, together with Doppler spread
on f and possible changes or jitters of carrier frequencies, the
distribution ofφ will look almost uniform between[−π, π].

The difference in antenna gains (whenα 6= 1) is caused by
the local scattering from mounting structure (walls, rooftops
...) near the antennas and is often found in practice. While
this gain ratioα also exhibits a dependence on the angle
of departure, which is a function of the antenna pattern, its
sensitivity to the departure angle is much less than that of the
phase shift. We therefore assume that this gain ratio can be
tracked and measured accurately.

In this study, we assume that the receiver has perfect knowl-
edge of the channel, while the transmitter has some partial
channel knowledge. The transmitter can obtain the channel
in the forward path by estimating the reverse channel in TDD
(Time Division Duplexing) systems, or through feedback from
the receiver in FDD (Frequency Division Duplexing) systems.
In both cases, there is likely to be an error in the estimationdue
to the time offset or lag between the channel measurement and
its use, hence the transmitter can only obtain partial channel
knowledge. The channel can be characterized by antenna gains
and a phase shift between the two antennas. Due to high K
factor, the antenna gains are likely to be very stable and can
be estimated accurately. We therefore assume perfectly known
α andh1. The antenna phase shift, however, is highly variable
due to the large separation between antennas, leading to errors
in the phase estimate. We assume the PDF of the phase shiftφ
is known but not the exact value of the phase. This phase shift
distribution is circular between−π andπ. The precise shape
of the distribution depends on the channel characteristicsand
the measurement method. A Dirac delta distribution function
corresponds to exact phase knowledge, whereas a uniform
distribution means no phase information. In fast time varying
channels, the phase measurements are more error prone, hence
the distribution will tend toward uniform.

Our analysis requires that the phase shift distribution is
symmetricaround the meanφ0. The exact power allocation at
the two transmit antennas does depend on the actual PDF of
the phase shift. We first carry out the analysis for general phase
PDFs, and then apply the analysis results to Ricean phase

distribution specifically for numerical simulations. The Ricean
phase distribution can be parameterized to cover the range
from uniform phase distribution (i.e. unknown phase shift)
to delta function distribution (i.e. exact phase knowledge)
and will be discussed in more details in the numerical result
section.

III. PROBLEM OVERVIEW

A. Problem Setup

We use the ergodic channel capacity under the sum power
constraint on transmit antennas as the optimization criterion.
Since the receiver has full knowledge of the channel[h1 h2],
the ergodic capacity of the channel is achieved by Gaussian
input signal[x1 x2]

T with zero mean [1] and acovariance
matrix Rxx which satisfies

max
Rxx

E log(1 + γhRxxh
∗)

s.t. tr(Rxx) = 1 , (1)

where γ is the total signal to noise ratio with appropriate
normalization.

We can absorbh1 into γ and write the effective channel as

h = [1 αejφ] ,

where0 ≤ α ≤ 1. Taking into account the total transmit power
constraint tr(Rxx) = 1, the transmit signal covariance matrix
Rxx can be expressed as

Rxx =

[

η 1
2ρe−jψ

1
2ρejψ 1 − η

]

. (2)

Here η is the fraction of total powerallocated to the first
antenna,ψ is the signal phase shiftand ρ is twice the
magnitude of the covariancebetween signals transmitted from
the two antennas defined as

ρ = 2
∣

∣E[x1x
∗

2] − E[x1]E[x∗

2]
∣

∣ = 2
∣

∣E[x1x
∗

2]
∣

∣ ,

where the last equality results from the signals having zero-
mean. In the followings we will callρ simply as the covariance
magnitude.

The three variablesη, ψ and ρ define the transmission
scheme. The constraints on these variables become

0 ≤ η ≤ 1

−π ≤ ψ ≤ π

0 ≤ ρ ≤ 2
√

η(1 − η) . (3)

The bounds onη follow immediately from its definition,
whereas the bounds onψ result from a predefined domain
of the signal phase shift. The upper bound onρ comes from
the covariance relation

∣

∣E[x1x
∗

2]
∣

∣ ≤
√

E|x1|2E|x2|2 (4)

for zero-mean random variables. This bound can also be ob-
tained via the positive semidefinite property of the covariance
matrix Rxx.
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With these channel and signal models, and the assumption
that the phase distribution is symmetric around its meanφ0,
the average mutual information can be written as

I = E log(1 + γhRxxh
∗) (5)

=

∫ π

−π

log
[

γ(1 − α2)η + γαρ cos(φ + ψ0) + γα2 + 1
]

f(φ)dφ

where ψ0 = φ0 + ψ. Note that f(φ) is the phase PDF
function translated to be centered at its mean, that isf(φ)
is symmetric around zero. In the following sections, we will
use this translated phase PDFf(φ) in all derivations. We are
interested in maximizing (5) by choosingη, ψ andρ subject
to the constraints (3).

B. Summary of Results

The optimum transmission scheme is defined by the transmit
covariance matrixRxx, which in turn is defined byη, ψ and
ρ. These are found based on the known channel parameters at
the transmitter, which are the channel phase shift distribution
f(φ), the channel gain ratioα and the SNRγ. The main results
can be summarized as

• The optimum signal phase shiftψ? is the negative of the
estimate channel phase shiftφ0 or that plusπ, depending
on the specific phase shift distributionf(φ). Theψ? value
is independent ofα andγ. This is derived in Section IV.

• When the channel gain is unequal (α < 1), the opti-
mum transmission scheme is always beamforming with
unequal power allocation to the two transmit antennas.
The optimumρ? is a function ofη?, andη? is a function
of the phase shift distributionf(φ), the channel gain ratio
α and the SNRγ. This is derived in Section V-A.

• When the channel gain is equal (α = 1), the optimum
solution can either be beamforming or space-time coding
with correlated signals. In this case,η vanishes in the av-
erage mutual information expression (5).ρ? is a function
of f(φ) andγ, thenη? can be chosen arbitrarily within
its range subject to the inequality onρ? in (3). This is
analyzed in Section V-B.

IV. OPTIMUM SIGNAL PHASE SHIFTψ?

The optimum signal phase shiftψ? is independentof the
channel gain ratioα and the SNRγ, and hence, is treated
separately in this section.

Theorem 1:The optimum phase shiftψ? between the trans-
mit signals from two antennas is the negative of the estimated
channel phase shiftφ0 or that plusπ, depending on the channel
phase shift distributionf(φ). That is

ψ? = −φ0 or ψ? = π − φ0 .
Proof. The original problem (1) is a convex optimization

problem and hence has a unique solution, which leads to
a unique solution ofψ?. Due to symmetry of the phase
distribution, from (5), we can rewrite the average mutual
information as

I =

∫ π

0

log
[

p2 + 2pγαρ cos ψ0 cos φ +

γ2α2ρ2(cos2 ψ0 + cos2 φ − 1)
]

f(φ)dφ ,

where p = γ(1 − α2)η + γα2 + 1 and ψ0 = φ0 + ψ. The
mutual information expression can be rewritten as a function
of z = cos ψ0 = cos(φ0 +ψ). The optimization can be carried
out with respect toz instead ofψ, then the optimum valueψ?

can be derived fromz?. If the optimumz? is not1 or −1, then
there will be two different values of the optimum phase shift
ψ? within the range[−π, π] that satisfycos(φ? +φ0) = z?, as
cosine is an even function. This in turn violates the uniqueness
of ψ?. Therefore the optimum value ofz must be either1 or
−1, which leads to the optimum signal phase shiftψ? = −φ0

or ψ? = π−φ0 respectively. This is the result of the symmetry
of the channel phase shift distribution. ¤

The specific value forψ? depends on the phase shift distri-
bution functionf(φ). The choice can be made by examining
the mutual informationI at the two boundary valuesψ = −φ0

andψ = π−φ0, then choose the value which makesI larger.
With ψ = −φ0, the average mutual information (5) becomes

I|ψ=−φ0
= 2

∫ π

0

log
(

p + γαρ cos φ
)

f(φ)dφ .

A similar expression can be obtained for the caseψ = π−φ0.
The difference between average mutual information at the two
candidate values forφ? is

∆I = I|ψ=−φ0
− I|ψ=π−φ0

= 2

∫ π

0

log
(p + γαρ cos φ

p − γαρ cos φ

)

f(φ)dφ .

The logarithmic expression is anti-symmetric aroundπ/2,
therefore the above difference can be rewritten in the form

∆I = 2

∫ π/2

0

log
( 2p

p − γαρ cos φ
−1

)[

f(φ)−f
(

φ+
π

2

)

]

dφ .

Since the logarithmic expression in the above integral is
non-negative within the integral range, we can obtain the sign
of ∆I simply without having to evaluate the integral explicitly
if f(φ)−f

(

φ+ π
2

)

does not change sign within0 ≤ φ ≤ π/2.
More specifically, if the translated phase distribution function
f(φ) is monotonous within the range0 ≤ φ ≤ π, then the
choice amongstφ = 0 andφ = π, which makesf(φ) larger,
corresponds to the optimumψ? value being−φ0 or π − φ0

respectively. This monotonicity applies to the Ricean phase
distribution which we use in numerical simulations later. Since
f(φ) is circular within−π ≤ φ ≤ π, we can always rotate the
distribution so thatf(0) > f(π). Therefore without loss of
generality, we assume that the channel phase shift distribution
is such that the optimum signal phase shift isψ? = −φ0 in
the next section.

V. OPTIMUM SIGNAL POWERη? AND COVARIANCE

MAGNITUDE ρ?

In this section we will derive the optimum set ofη andρ. It
turns out that the cases of unequal channel gain (α < 1) and
equal channel gain (α = 1) have significantly different impact
on the optimumη? and ρ?. While the solution of unequal
channel gain case can be applied to the equal case, the latter
has a larger solution space. Therefore we analyze these two
cases separately.
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A. Unequal channel gains

We assume without loss of generality that the first antenna
always has a higher gain than the second antenna, thusα is
strictly less than 1. The optimization problem (1) now becomes

max

∫ π

0

log
[

γ(1 − α2)η + αργ cos φ + γα2 + 1
]

f(φ)dφ

s.t. 0 ≤ η ≤ 1 (6)

0 ≤ ρ ≤ 2
√

η(1 − η) .

Optimum signal covariance magnitude ρ?

Theorem 2:With α < 1, the optimum magnitude of the
covariance between the transmit signals from the two antennas
is

ρ? = 2
√

η(1 − η) . (7)

Hence the transmit signals has the form

x2 = ζe−jφ0x1 , (8)

with ζ given by

ζ =

√

1 − η

η
.

In other word, the optimum transmission scheme reduces to
simple beamforming with unequal power at each antenna.

Proof. Problem (6) is a convex optimization problem. Form
the Lagrangian functional

L(η, ρ, λ) = E log
[

γ(1 − α2)η + αργ cos φ + γα2 + 1
]

−λ
[

ρ − 2
√

η(1 − η)
]

,

whereλ ≥ 0 is the Lagrange multiplier. Then the optimizers
η? andρ? are the solutions of the equations formed by setting
the partial derivatives ofL(η, ρ, λ) to zero. In particular,
setting the partial derivative with respect toη to zero leads
to

E
[ γ(1 − α2)

γ(1 − α2)η + αργ cos φ + 1 + γα2

]

= λ
2η − 1

√

η(1 − η)
.

Forα < 1, the left-hand-side of the above expression is strictly
greater than 0 for all distributions ofφ as the expression under
the expectation is always positive. Thusλ? > 0 andη? > 1

2 .
Sinceλ? is strictly positive, it means that the upper constraint
onρ is tight (Karush-Kuhn-Tucker conditions [4]), henceρ? =
2
√

η(1 − η). Another way to arrive at this result is by equating
the partial derivative ofL(η, ρ, λ) with respect toρ to zero to
get

∂I
∂ρ

= E
[ αγ cos φ

γ(1 − α2)η + αργ cos φ + 1 + γα2

]

= λ > 0 .

Therefore the average mutual informationI is increasing inρ
at the optimum point. This means the optimumρ? is achieved
at its maximum value.

This maximum covariance magnitude can be achieved only
when the signal sent from one antenna is a scaled version of
the signal sent from the other antenna, following the equality
condition on (4). Applying the phase shift result of Theorem1,
the transmit signals becomex2 = ζe−jφ0x1. The covariance
magnitude becomesρ = 2E[x1x

∗

2] = 2ζη = 2
√

η(1 − η),
which leads to the value ofζ as given in the Theorem. ¤

Hence the optimum transmit strategy is to dobeamforming
all the time, with the power at each antenna adjusted according
to the channel parameters. The optimum covariance matrix
Rxx always has rank one in this case.

Optimum power allocation η?

Replacing the optimumρ? into the average mutual information
in (6), the problem then becomes findingη ∈ [0, 1] to
maximize the following expression

E log
[

(1 − α2)η + 2α
√

η(1 − η) cos φ + α2 +
1

γ

]

.

Since the above expression is concave inη, the optimumη?

is the solution of

E
[

1 − α2 + 1−2η√
η(1−η)

α cos φ

(1 − α2)η + 2α
√

η(1 − η) cos φ + α2 + 1
γ

]

= 0 . (9)

The optimumη? is a function off(φ), α, γ.

B. Equal channel gains

In this section we treat the caseα = 1. With the optimum
signal phaseψ? = −φ0, the average mutual information
becomes

I = 2

∫ π

0

log
(

ργ cos φ + γ + 1
)

f(φ)dφ .

Notice that the signal power allocationη does not appear
in this expression as a result of the equal channel gain.
Therefore in this case, the covariance magnitudeρ can be
found independently ofη and the maximization can be taken
over 0 ≤ ρ ≤ 1.

Optimum signal covariance magnitude ρ?

Since the above expression is concave inρ, the optimumρ?

is the solution of
∂I
∂ρ

= 2

∫ π

0

γ cos φ

ργ cos φ + γ + 1
f(φ)dφ = 0 . (10)

The optimumρ? depends on the specific phase distribution
f(φ) and the SNRγ.

Optimum power allocation η?

Here the optimumρ? and η are only related to each other
through the inequality

ρ? ≤ 2
√

η(1 − η) . (11)

Hence one can choose any power allocation valueη that
satisfies this relation and design the signal according to the
obtained optimumRxx. The rank of this covariance matrix is
not restricted to be one as in the unequal channel gain case.
The choice ofη?, which influences the rank ofRxx, therefore
can be divided into two general categories:

• Rxx rank one - Beamforming:Here we pick the value of
η? that meets the bound (11) with equality, which gives

η? =
1

2
(1 ±

√

1 − (ρ?)2) . (12)
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Fig. 2. Ricean phase distribution

This is the same solution as the optimum scheme for
unequal channel gain case (7). The optimum signal design
is thenx2 = ζe−jφ0x1, whereζ is given by

ζ =
ρ

1 ±
√

1 − ρ2
.

• Rxx full rank: This can be done by picking a value
of η that satisfies the inequality (11) strictly. The signal
design problem then becomes finding a coding scheme
for the given covariance matrixRxx. A specific choice
is η = 1

2 , which makes the signals from the two antennas
have equal power. The optimum signal then has to be
designed such thatx1 and x2 have identical Gaussian
distributions with a correlation factor equal toρ?/2.

As a special case for both of the above categories, when
there isno phase estimate(equivalent to uniform phase shift
distribution), then the optimum solution isρ? = 0, which
means sending independent zero-mean Gaussian signals from
two antennas with the only constraint being that their powers
add up to one. Using a single antenna and putting all the
transmit power there also achieves the capacity with no
randomness, hence single antenna transmission is preferred
in this case. That is,η? = 1.

VI. SIMULATION EXAMPLES

We use Ricean phase distribution for the channel phase shift
in the simulations. This distribution arises from the phaseof
a constant phasor plus random zero-mean complex Gaussian
noise with equal variance on the real and imaginary parts [14],
[17]. Thephase estimate qualitycan be conveniently described
by the Ricean factorβ. Assuming an estimated meanφ0 with
a given estimate qualityβ, and denoting̃φ = φ−φ0, the phase
shift distribution function is

fΦ(φ) =
e−β2

2π

{

1 +
√

πβ cos φ̃eβ2 cos2 φ̃
[

1 + erf(β cos φ̃)
]

}

. (13)

If β = 0, the phase distribution is uniform, corresponding to
no phase estimate. Whenβ → ∞, the distribution converges
to the Dirac delta function, which means that the estimate is
exact. A plot of the phase distribution with estimated mean
φ0 = 0 at various values ofβ is given in Figure 2.

A. Unequal channel gains

We solve equation (9) numerically to findη?. It turns out
that the SNRγ has a very little effect onη?, which can be seen
from this equation as1/γ can be ignored for reasonably large
values ofγ. Simulation results show that we get practically
the same value ofη? for all γ ≥ −20dB. Figure 3 shows the
plot of the optimum power allocationη? as a function of the
channel gain ratioα and the phase estimate qualityβ, at SNR
γ = 10dB.

When η = 1, it means that only one antenna is used.
This is the case when no phase estimate exists (β = 0). In
such situations, using only the stronger antenna to transmit
is optimum regardless of the actualα value (α < 1 here).
As the phase estimate quality increases, the power distributes
to both antennas unequally. The scheme approaches transmit
maximum ratio combining (MRC) beamforming, which is op-
timum when the channel is known perfectly at the transmitter.
The MRC beamforming power allocation is a function ofα
and is given as

ηMRC =
1

1 + α2
. (14)

Figure 4 shows slices of the optimum power allocation
versus the phase estimate quality and channel gain ratio.
In the power versus phase estimate quality plot, the power
allocationη levels off for β ≥ 3 approximately at all channel
gain ratios. These levels are the MRC power allocations at
the corresponding channel gain ratioα. The same effect is
reflected in the power versus channel gain ratio plot. The
power allocation plots forβ ≥ 3 are almost indistinguishable,
and correspond to a plot of the MRC power allocation (14)
versusα. Thus practically, MRC beamforming can be close
to optimum even at imperfect phase estimates.

B. Equal channel gains

Solving equation (10) with the Ricean phase distribution by
numerical means, we obtain the plot for the optimumρ? in
Figure 5. The value ofρ = 1 means beamforming where signal
sent from one antenna is a scaled version of signal sent from
the other, whereasρ = 0 means independent signals from the
two antennas.
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Fig. 4. Optimum power allocation for unequal channel gain.

In case of a beamforming solution (Rxx rank one), the
power split between the two antennas (12) is regulated accord-
ing to the phase estimate qualityβ and the SNRγ. A plot of
the optimum power allocationη? versus the phase estimate
quality β at various SNRs is shown in Figure 6(a). Since the
roles of the two antennas here are symmetric, we only show
values such thatη? ≥ 0.5. The lines in this plot correspond
to the edge of the surface in Figure 3 atα = 1 at different
SNRs. Notice that at this edge,η? depends quite significantly
on the SNR.

If the phase estimate qualityβ is abovea certain threshold,
which is a function of the SNRγ, then the integral in (10)
is always non-negative for0 ≤ ρ ≤ 1, which leads to
only beamformingbeing optimum. In this particular case, the
beamforming corresponds toρ? = 1 andη? = 1

2 , that is, both
antennas transmit with equal power. This threshold is plotted
in Figure 6(b).

C. Capacity comparison with and without channel knowledge

In this section we provide a quantitative analysis of the gain
in capacity obtained by the partial channel knowledge at the
transmitter. For both cases of unequal and equal channel gain,
the capacity with no phase estimate available is

C0 = log(1 + γ) ,
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Fig. 5. Optimumρ? in equal channel gain case.

and the capacity with perfect phase estimate is

C1 = log
(

1 + (1 + α2)γ
)

.

If we do not have the partial channel knowledge at the
transmitter and send independent Gaussian signals with equal
power from the two antennas, the average mutual information
obtained is

Ieq = log
(

1 +
1 + α2

2
γ
)

.

Thus the capacity, or spectral efficiency, gain with partial
channel information in this case depends on the quality of the
phase knowledge. At high SNRs, the spectral efficiency gain
is an additive constant and has a range as

1 − log(1 + α2) ≤ Cgain ≤ 1 (bps/Hz) .

In terms of SNR advantage at the same transmission rate, the
gain is

10 log10(1 + α2) ≤ SNRgain ≤ 3 (dB) .

In Figure 7 we show the capacity and mutual information at
various channel knowledge for both unequal and equal channel
gain cases. The spectral efficiency gain depends on the channel
gain ratio and the quality of the phase knowledge. The unequal
channel gain plot illustrates that the knowledge of channelgain
is valuable, even when the channel phase shift is unknown
(β = 0). The power allocation to the two antennas can be
regulated according to the known channel gain ratio to achieve
a higher spectral efficiency than that obtained by independent
and equal power transmission. For equal channel gain case,
on the other hand, some phase knowledge is required to
gain spectral efficiency over independent and equal power
transmission from the two antennas.

VII. C ONCLUSION

We have studied2×1 MISO channels with partial transmit
channel knowledge characterized by a known channel gain ra-
tio and known phase shift PDF. The optimum signaling scheme
is shown to be beamforming on the estimated channel phase
shift with per antenna power adjusted according to the known
parameters. While in the analysis we assume that the channel
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Fig. 6. Equal channel gain case.

coefficients have fixed amplitudes, the same results also apply
to channels with high K factors, where the amplitudes of the
channel coefficients can be estimated and is known, but the
channel phase is unknown and random. In such situations,
simple beamforming scheme is optimum from the ergodic
capacity point of view. Partial channel knowledge therefore
can help to simplify the transmission scheme significantly,and
at the same time provides a spectral efficiency gain of up to 1
bps/Hz or a SNR advantage of up to 3dB using two transmit
antennas.
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