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Abstract—We study the cognitive interference channel (CIC)
with two transmitters and two receivers, in which the cognitive
transmitter non-causally knows the message and codeword of the
primary transmitter. We first introduce a discrete memoryless
more capable CIC, which is an extension to the more capable
broadcast channel (BC). Using superposition coding, an inner
bound and an outer bound on its capacity region are proposed.
These bounds are then applied to the Gaussian cognitive Z-
interference channel (GCZIC), in which only the primary re-
ceiver suffers interference. Upon showing that jointly Gaussian
distribution maximizes these bounds for the GCZIC, we evaluate
them for the GCZIC. The evaluated outer bound appears to be
the best outer bound to date on the capacity of the GCZIC in
strong interference. More importantly, this outer bound coincides
with the inner bound for |a| ≥

√
1 + P1. Thus, we establish the

capacity of the GCZIC in this range and show that superposition
encoding at the cognitive transmitter and successive decoding at
the primary receiver are capacity-achieving.

I. INTRODUCTION

The cognitive channel is a special case of an interference
channel in which the second transmitter has complete and
non-causal knowledge of the messages and codewords of the
first transmitter. This channel can be used to model an ideal
operating scenario for cognitive radios, a device that can sense
and adapt to the environment intelligently in coexistence with
primary users.

Fundamental limits of the cognitive channel was first ex-
plored in [1] with an achievable rate region obtained by merg-
ing Gel’fand-Pinsker coding with Han-Kobayashi coding for
the interference channel. At low interference, the capacity re-
gion of this channel in the Gaussian case has been established
in [2] and [3] independently. While reference [2] considers the
Gaussian channel only, reference [3] also studies the discrete
memoryless channel case as an interference channel with
degraded message set (IC-DMS). Cognitive channel capacity
is also known for strong interference, when both receivers can
decode both messages [4]. The capacity of a variation of the
CIC in which the cognitive receiver is required to decode both
messages has been established in [6] and [7].

The Z-interference channel (ZIC) is an interference channel
in which only one receiver suffers from interference. Its
capacity is still unknown even for the Gaussian channel, except
for some special cases. From the capacity perspective, it is
not important which transmitter interferes with the other in

the ZIC. In a cognitive ZIC, however, due to asymmetric
transmitters, two different ZIC are conceivable. One is with
interference from the cognitive transmitter to the primary
receiver, and the other from the primary transmitter to the
cognitive receiver. While the capacity of the latter in the
Gaussian case can be fully obtained using the well-known dirty
paper coding (DPC), the capacity of the former is known only
in special cases.

In this paper, we study the discrete memoryless cogni-
tive interference channel (DM-CIC) in which the cognitive
transmitter interferes with the primary receiver, and apply
the results to the Gaussian cognitive ZIC (GCZIC). The
contribution can be summarized as follows. First, we introduce
a new DM-CIC in which the primary receiver is more capable
than the secondary receiver. Using superposition coding, we
establish an inner and an outer bound on its capacity. These
bounds are also valid for cognitive Z-interference channel.
Second, by showing that jointly Gaussian input is optimal
for the Gaussian channel, we evaluate the outer bound for
the GCZIC. This outer bound is the best outer bound for the
GCZIC at strong interference; it also becomes tighter as the
gain of the interference link increases. Last, we derive the
Gaussian version of the introduced inner bound and establish
the capacity of the GCZIC for |a| ≥

√
1 + P1, where a is the

gain of the interference link.
The rest of this paper is organized as follows. In Section II,

we discuss models for the DM-CIC and the GCZIC as well as
the existing capacity result for the GCZIC. We also introduce
the more capable DM-CIC in this section. In Section III, we
provide new inner and outer bounds on the capacity region of
the DM-CIC. Then in Section IV, we evaluate these bounds
for the GCZIC. We also establish the capacity of this channel
for substantially large interference. In Section V, we conclude
the paper.

II. CHANNEL MODELS AND EXISTING RESULTS

The cognitive IC, also called an IC with degraded message
sets (IC-DMS), is a special case of the classical interference
channel (IC) in which one transmitter, the cognitive one, has
non-causal knowledge of the message and codeword to be
transmitted by the other transmitter, the primary one. Next,
we formally define this channel and its derivatives.
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A. More capable DM-CIC

Consider a DM-CIC where sender 1 wishes to transmit
message M1 to receiver 1 and sender 2 wishes to transmit
message M2 to receiver 2. Message M2 is available only at
sender 2, while both senders know M1. This channel is defined
by a tuple (X1,X2; p(y1, y2|x1, x2);Y1,Y1) where two inputs
X1, X2, and two outputs Y1, Y2 are related by a collection of
conditional probability mass functions p(y1, y2|x1, x2).

Definition 1. The DM-CIC is said to be more capable if

I(X1, X2;Y1) ≥ I(X1, X2;Y2) (1)

for all p(x1, x2).

Since the second transmitter can encode and broadcast both
messages, in the absence of the first transmitter, this channel
reduces to the well-known more capable DM-BC. In the
presence of the first sender, this channel is no longer a BC but
is an interference channel (IC). However, due to cognition, the
second transmitter has complete and non-causal knowledge of
both messages and codewords; thus, it can act similarly to
the transmitter of a BC. This observation is the motivation
for defining condition (1) similar to the one that makes one
receiver more capable than the other in a DM-BC.

B. Gaussian cognitive interference channels

For the Gaussian CIC, without loss of generality, we use
the standard form [14], in which the gains of both direct links
are one and both noises are independent with unit variance as
follows.

Y1 = X1 + aX2 + Z1

Y2 = bX1 +X2 + Z2.

Here the interference links are arbitrary real constants a and
b known at all the transmitters and receivers, and Z1, Z2 are
independent additive noises Zi ∼ N (0, 1) (i = 1, 2). We also
assume that transmitted signals are subject to average power
constraint as E[X2

1 ] ≤ P1 and E[X2
2 ] ≤ P2.

Depending on the values of the interference links a and
b, different classes of CIC emerge. A special class is the Z-
interference channel (ZIC) when either a = 0 or b = 0. For
a non-cognitive system, there is no difference in the capacity
analysis of these two ZICs. In a cognitive system, however,
due to asymmetric knowledge at the transmitters, two different
cognitive ZICs are conceivable. One is when the primary
receiver has no interference (a = 0), and the other is when
the secondary receiver has no interference (b = 0). These two
GCZIC channels have completely different capacity regions.
The capacity of the GCZIC with a = 0 can be simply obtained
from the well-known result of dirty paper coding by Costa [8].
On the other hand, the capacity of the second GCZIC (with
b = 0) is known only in certain ranges of a. In the rest of this
paper, GCZIC refers to the case with b = 0.
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Fig. 1. The Gaussian cognitive Z-interference channel (GCZIC)

C. Existing results on GCZIC capacity

The GCZIC at weak interference (a2 ≤ 1) is a special case
of the cognitive Gaussian interference channel (when b = 0),
for which the capacity region is known for |a| ≤ 1 [2]. For
strong interference regime (a2 ≥ 1) however, the capacity of
the GCZIC is not completely known. An outer bound on the
capacity of the Gaussian CIC was established by Maric et al.
[4], in Corollary 1. This has been the best outer bound for the
capacity of the GCZIC as well as the cognitive Gaussian IC,
at strong interference regime. Recently, references [10] and
[11] concurrently showed that this outer bound is tight for
the GCZIC when 1 ≤ a ≤

√
1 + P1

1+P2 . Also, independently
of this work, the GCZIC capacity has been established for
|a| ≥

√
P1P2 +

√
1 + P1 + P1P2 using the MIMO-BC outer

bound in [12].

III. INNER AND OUTER BOUNDS ON THE CAPACITY OF
THE MORE CAPABLE DM-CIC

In this section, we first derive an achievable rate region for
the DM-CIC, then introduce a new outer bound on the capacity
of the more capable channel. Both the achievability and outer
bound closely follow from those of the more capable DM-BC.

A. A new achievable rate region

Theorem 1 provides an achievable rate region for the general
DM-CIC.

Theorem 1. For the DM-CIC, any rate pair (R1, R2) that
satisfies

R1 ≤ I(X1;Y1|U)

R2 ≤ I(U ;Y2)

R1 +R2 ≤ I(X1, X2;Y1) (2)

for some joint distribution that factors as p(u)p(x1)
p(x2|x1, u)p(y1, y2|x1, x2) is achievable.

The proof uses superposition coding at the cognitive transmit-
ter and joint typicality decoding. Y2 can only decode M2 (the
cloud center) while Y1 can decode the satellite codewords. The
complete proof can be found in [14].
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B. More capable BC capacity inspired outer bound

Inspired by the capacity of more capable BC [9], [13], the
following region is an outer bound on the capacity of the more
capable DM-CIC.

Theorem 2. The union of all rate pairs (R1, R2) such that

R2 ≤ I(U ;Y2)

R1 +R2 ≤ I(X1;Y1|U) + I(U ;Y2)

R1 +R2 ≤ I(X1, X2;Y1) (3)

for some joint distribution p(u, x1, x2)p(y1, y2|x1, x2) gives
an outer bound on the capacity region of the more capable
DM-CIC, as defined in (1).

The proof is similar to the converse of the more capable BC
in [9] and is available in [14]. For the more capable BC, this
new region is shown to be an alternative representation of the
rate region in Theorem 1 [9]; thus establishing its capacity.
However, these two regions are not equivalent for DM-CIC
because of different input distributions. Therefore, Theorem
2 provides only an outer bound for the capacity of the more
capable DM-CIC.

Note that Theorem 2 also applies for the DM-CIC with
strong cognitive interference [14], which is defined as

I(X2;Y1|X1) ≥ I(X2;Y2|X1) (4)

for all p(x1, x2). In the sequel, we show that this outer bound
is tight for the GCZIC at very strong interference.

IV. BOUNDS AND CAPACITY OF THE GAUSSIAN
COGNITIVE Z-CHANNEL AT STRONG INTERFERENCE

The capacity of the GCZIC in the strong interference regime
(a2 ≥ 1) is known only in certain ranges. In [10], [11]
the capacity is established for 1 ≤ a ≤

√
1 + P1

1+P2 , and,
recently and independently of this work, for |a| ≥

√
P1P2 +√

1 + P1 + P1P2 in [12].
In what follows, we provide new inner and outer bounds for

the capacity of the GCZIC by evaluating the inner and outer
bounds proposed in Section III. Then, we prove that these
inner and outer bounds coincide when the interference is very
strong, i.e., for |a| ≥

√
1 + P1.

A. A new outer bound on the capacity of the GCZIC

In this section, by evaluating the Gaussian version of the
outer bound in Theorem 2, we provide a new outer bound for
the capacity of the GCZIC. As Theorem 2 also applies to the
CIC with strong interference in (4), it holds for a2 ≥ 1 [14].

Lemma 1. An outer bound on the capacity region of the
GCZIC with a2 ≥ 1 is the set of all rate pairs (R1, R2)

satisfying

R2 ≤ C
(

ρ22P2

1 + P2(1− ρ22)

)
R1 +R2 ≤ C

((√
(1− ρ21)P1 + |a|

√
(1− ρ22)P2

)2)
+ C

(
ρ22P2

1 + P2(1− ρ22)

)
R1 +R2 ≤ C

(
P1 + a2P2 + 2|a|

√
ρ212P1P2

)
(5)

for |ρ12 − ρ1ρ2| =
√

(1− ρ21)(1− ρ22), and ρ1, ρ1 ∈ [−1, 1]
where C(x) , 1

2 log(x).

This outer bound is the Gaussian version of the outer bound
in Theorem 2. The proof of Lemma 1 involves three major
steps as follows [14]

i) Show that jointly Gaussian distribution is optimal for the
inputs (X1, X2, U ).
ii) Evaluate the outer bound in Theorem 2 with jointly
Gaussian inputs (U,X1, X2) ∼ N (0,K).
iii) Find the optimum covariance matrix K to maximize
the bound

In (5), ρ1, ρ2, ρ12 are the correlation factors between (U,X1),
(U,X2), and (X1, X2) respectively.

Next, we simplify this bound by removing ρ12 from the
last inequality in (5). Since ρ12 = ρ1ρ2±

√
(1− ρ21)(1− ρ22),

then aρ12 ≤ |a||ρ12| ≤ |a|(|ρ1ρ2|+
√

(1− ρ21)(1− ρ22)). The
maximum is attained when ρ1ρ2 has the same sign with a.
Denoting α , 1 − ρ22, β , 1 − ρ21, and x̄ , 1 − x for any
x ∈ [0, 1], we get a simpler representation of the outer bound
as follows.

Corollary 1. An outer bound on the capacity region of the
GCZIC with |a| ≥ 1 is the set of all rate pairs (R1, R2)
satisfying

R2 ≤ C
( ᾱP2

1 + αP2

)
(6)

R1 +R2 ≤ C
(

(
√
βP1 + |a|

√
αP2)2

)
+ C

( ᾱP2

1 + αP2

)
R1 +R2 ≤ C

(
P1 + a2P2 + 2|a|(

√
αβ +

√
ᾱβ̄)

√
P1P2

)
for α, β ∈ [0, 1].

This outer bound is tight for |a| ≥
√

1 + P1 as shown later.

B. Superposition coding-based inner bound for the GCZIC

Here we evaluate the Gaussian version of the achievable
region introduced in Theorem 1 for the GCZIC.

Lemma 2. Any rate pair (R1, R2) satisfying

R1 ≤ C
(

(
√
P1 + a

√
αP2)2

)
R2 ≤ C

(
ᾱP2

1 + αP2

)
R1 +R2 ≤ C

(
P1 + a2P2 + 2a

√
αP1P2

)
(7)
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with α ∈ [0, 1] is achievable for the GCZIC.

Proof: The achievability of this region is straightforward
by Theorem 1. The primary user dedicates its whole power
to transmit m1, as X1 =

√
P1V (m1). The cognitive user

partially uses its power to help send the codewords of the
primary user. X2 contains two independent parts, X2 =√
αP2V (m1) +

√
ᾱP2U(m2). The cognitive receiver simply

decodes its own codeword assuming the other codeword as
interference. The primary receiver, however, uses successive
cancelation, where it first decodes and subtracts the cognitive
user’s codeword, then decodes its own codeword free of
interference.

C. Capacity of the GCZIC at very strong interference

We now prove that superposition coding achieves the ca-
pacity of the GCZIC for |a| ≥

√
1 + P1. Specifically, we

show that for this range of a, the outer bound in Corollary 1
coincides with the inner bound in Lemma 2 and gives the
capacity of the GCZIC.

Theorem 3. The capacity region of the GCZIC for |a| ≥√
1 + P1 is the union of the rate pairs (R1, R2) satisfying

R1 ≤ C
(

(
√
P1 + |a|

√
αP2)2

)
R2 ≤ C

( ᾱP2

1 + αP2

)
R1 +R2 ≤ C

(
P1 + a2P2 + 2a

√
αP1P2

)
(8)

with α ∈ [0, 1].

Proof: Based on the first two inequalities of the outer
bound in Corollary 1, on the boundary of this outer bound,
we must have R2 ≤ 1

2 log
(

1 + (
√
βP1 + |a|

√
αP2)2

)
. Com-

paring this inequality with the first inequality of Lemma 2,
we conclude that if β 6= 1 then the first inequity of Lemma 2
must be redundant; since otherwise the outer bound becomes
less that the inner bound, which is impossible. In [14] we
have shown that, for this inequality to be redundant we need
|a| <

√
1 + P1. This indicates that, if |a| ≥

√
1 + P1 there

exist some α for which this inequality cannot be redundant;
this in turn enforces β = 1. Finally, for β = 1, the outer bound
in Corollary 1 is equal to the achievable region in Lemma 2
[14], and capacity region in Theorem 3 is established.

It is also easy to show that when |a| ≥
√
P1P2 +√

1 + P1 + P1P2, the third inequality in the capacity region
becomes redundant and the capacity region can be represented
only by the last two inequalities in (8) [14]. This capacity
result is also established by the concurrent and independent
work in [12] but using a different approach. The achievability
follows from a more general DPC-based scheme for the
cognitive Gaussian interference channel. The outer bound is
completely different and is based on the MIMO-BC outer
bound [12].

Theorem 3 shows that, when the interference is very strong,
the interfered primary receiver can decode the message of the

interfering cognitive transmitter. This also suggests the optimal
coding scheme. While the primary user encodes independently,
the cognitive user superimposes the primary user’s codeword
on its own. Then, the cognitive receiver decodes its message
treating the primary user’s codeword as noise. The primary
receiver, however, performs successive cancellation; it first
decodes the cognitive user’s message, then subtracts it from the
received signal to decode its own message free of interference.

V. CONCLUSION

We have established the capacity of the GCZIC for |a| ≥√
1 + P1 and shown that superposition coding in the cognitive

transmitter and successive cancellation in the primary user is
optimum. Analysis of capacity results shows that superposition
coding is an indispensable tool in achieving the capacity of
this channel. At very strong interference, superposition coding
single-handedly achieves the capacity of this channel. At weak
and intermediate interference, both DPC and superposition
coding are required to establish the capacity.
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