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Capacity- and Bayesian-Based Cognitive
Sensing with Location Side Information

Peng Jia, Mai Vu, Tho Le-Ngoc, Seung-Chul Hong and Vahid Tarokh

Abstract— We investigate spectrum sensing by energy detection
based on two different objective functions: a Bayesian sensing
cost or the network weighted sum capacity. The Bayesian cost
is a traditional detection measure which aims at minimizing a
combination of the miss-detection and false-alarm probabilities,
while the capacity objective is a communication measure which
aims at maximizing the network throughput. Fading-dependent
optimal sensing thresholds for each objective are derived in
closed-form for different cases of location side information. To
make sensing more robust to channel fading, we also propose
fading-independent sub-optimal thresholds. Results show that
location side information helps improve performance when using
the threshold designed for that performance measure. However,
the Bayesian-based threshold does not utilize the side information
well in improving the network sum capacity. On the other
hand, the capacity-based threshold captures the benefit of side
information in both the capacity and Bayesian cost measures.
Furthermore, it helps to significantly improve the network
throughput. The proposed sensing schemes with location side
information can also be generalized to a network with multiple
cognitive users in a simple and distributed manner.

Index Terms—Cognitive radio, spectrum sensing, Bayesian
detection, capacity, side information.

I. INTRODUCTION

HE RECENT demand of versatile communication ser-

vices exerts large loads on the already crowded spectrum.
However, the perceived spectrum shortage is mostly because
of inflexible spectrum management rather than actual natural
resource shortage [1]. As measurements show, some licensed
bands are grossly under-utilized at various times and locations
[2], resulting in spectrum holes. Cognitive Radio, a device with
the ability to sense idle spectrum and adapt its transmission
to the detected changes [3], is a promising tool for leveraging
these precious spectrum holes. Since its conception, the ad-
vancement in silicon technologies makes the implementation
of the cognitive radio system realistic [4]. However, much of
the algorithms and prototyping is still emerging, addressing
challenges from both the theoretical [5] and experimental [6]
points of view.
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A fundamental issue for cognitive radios is how to keep
the licensed, privileged user’s communication from being
impaired while still achieving its own communication suc-
cessfully. To do so, the cognitive radio relies on spectrum
sensing to gather information on the external environment [7],
and after analyzing the gathered data, designs its respective
transmission strategies. Traditional signal detection techniques
have been used for spectrum sensing: matched filter, cyclosta-
tionary feature detection and energy detection [8]. Detection
using matched filter can result in the best performance by
maximizing the received signal-to-noise ratio, but requires a
priori knowledge of the primary user’s signal. Cyclostationary
feature detection exploits the inherent periodical characteris-
tics of modulated signals to compare the spectrum correlation
functions, however it faces computation complexity. Energy
detection [9], [10] is the simplest technique, just comparing the
received energy with a predetermined threshold. Because of its
simplicity and low latency, we focus on the energy detection
method in this paper.

While there have been a substantial amount of research on
energy detection in spectrum sensing in the past few years
(see for example [11]-[13]), we approach this problem from
two novel angles. First, what is the impact of different sensing
criteria on the communication performance? Second, can we
improve the performance of energy detection by the use of
side information?

Traditional detection, often used in radar, is to detect the
presence of a signal, for example, from a spacecraft. Hence the
main objective is to minimize the chances of miss detections
and false alarms. Miss detection occurs when there is a signal
but the radar fails to detect, and false alarm occurs when no
signals are present but the radar postulates one. Usually each
case has an associated cost, and the detection threshold is
designed to minimize a combination of these costs using a
Bayesian approach. Such a design works well for what it was
designed for — detecting the presence of a signal. However,
when applying to a communication network, detecting the
presence of the primary user’s signal is only an intermediate
goal. The end goal is communicating information. Hence often
performance is measured not in terms of the miss-detection or
false-alarm probabilities, but in terms of the transmission rate
and reliability. A detection threshold designed for minimizing
the miss-detection or false-alarm probabilities may not be
optimal for communication. In this paper, we investigate two
different objectives for designing the sensing threshold: the
traditional Bayesian criterion, and a new throughput-based
objective. By studying both objectives, we are able to compare
and contrast the impact of different sensing threshold designs
on the cognitive radio system.
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Another important aspect of cognitive communications is
the ability of the communicating device to process available
side information, or use cognition, to improve its performance.
For example, side information on the primary users’ signals
and code book can help increase the transmission rate region
[14], [15]. Other kinds of side information are also helpful.
Consider spectrum sensing in a network in which the nodes are
mobile, or in which they are static but join and leave the net-
work at random. Information on the locations of these nodes
can be useful in adjusting the sensing threshold. Utilizing such
location side information and understanding its impacts are the
second topic studied in this paper.

The paper is organized as follows. In Section II, we intro-
duce the spatial model for a network with a single primary
and single cognitive user, and the channel model with both
large- and small-scale fading. Section III formulates the two
objectives for designing the sensing threshold: the network
weighted sum capacity and the Bayesian cost function. Based
on these two objectives, in Section IV, the optimal sensing
thresholds are derived for the case of full location side infor-
mation. In Section V, we extend these designs to the cases of
partial location side information. Generalization to a network
with multiple cognitive users is given in Section VI. Section
VII presents the numerical results and our corresponding
discussion. We conclude in Section VIII.

II. NETWORK AND CHANNEL MODELS
A. Network model

Consider a network consisting of one cognitive user and one
primary user, each having a pair of transmitter and receiver
which are randomly located. The random locations can arise
from mobility or random network access. Let the cognitive
transmitter Cx be the center of the network at the polar coordi-
nates (0, 0). The cognitive receiver Cr is uniformly distributed
within the disc centered at the origin with radius R.. Let the
impact radius of the cognitive transmitter be R?; such that any
primary receiver falling within this radius will be noticeably
interfered by the cognitive transmitter. The considered primary
receiver P lies uniformly within this radius R;. Centered at
P, the primary transmitter Py is uniformly distributed within
the disc with radius R, (see Fig. 1). The radii R, R; and R,
are known network parameters.

Assume a protected region of radius e centered at every
receiving node. Any active transmitter cannot be inside this
region to exclude the possibility that the receive signal or
interference power rises to infinity.

Let Sy Spr and S, respectively specify the locations of
P, Pix and Cx within the polar coordinates. Consider S, for
example, and let r denote its radius and 6 denote its angle.
For uniformly distributed Cix, » and 6 are independent and
have the following probability density functions:

2r
fr(r):m, e<r <R,
1
= — < < .
f9(9) 9 0<60<2r (1)

The distributions for the radius and angles in S, and Sj; can
be similarly derived.

Network model.

Fig. 1.

B. Channel model

Consider a wireless channel model with both large-scale
path loss and small-scale fading. Free-space path loss models
the averaged power changing with distance. Rayleigh fading
models the small-scale variation. The channel between any
transmitter-receiver (Tx-Rx) pair can then be written as

h=v-n, ©))

where v is the path loss component and 7 is the small-scale
fading component. Here we assume that n ~ CN(0,1) is a
circular complex Gaussian random variable with independent,
equal-variance real and imaginary parts, but our analysis also
applies to other fading distributions. The pathloss component
is modeled as A

de/2
where « is the pathloss exponent, d is the Tx-Rx distance
and A is a constant dependent on the frequency and the
transmitter/receiver antenna gain. Without loss of generality,
we assume A = 1 in the subsequent analysis. Effectively,
at a given Tx-Rx distance, the channel in (2) can also be
viewed as having a circular complex Gaussian distribution
with the variance dependent on the Tx-Rx distance, that is
h ~ CN(0,1?).

In the network of Figure 1, we are particularly interested
in 5 channels as follows.

o hg: the channel between Py and Ci used in detection

e hyp: direct channel between Py and Py

e h: direct channel between C and Ci

o hep: interference channel between Py and Ci

o hpc: interference channel between Cy and P

All channels hq, hy, he, hpe, hep are independent of each
other and follow the model in (2). The corresponding path
loss and fading components of each channel will be denoted
respectively as v and 1 with the same subscript as that of
the channel. We assume no channel knowledge (of either path
loss or fading) at any transmitter. The implication of channel
knowledge at receivers is discussed later in Section III-C.

v

C. Signal model

In this theoretical study, we assume that the transmit signal
of either the primary or cognitive user is Gaussian with zero-
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mean, with no particular modulations. The primary user has
transmit power P; and the cognitive user has power P..

We assume that the cognitive transmitter is the device to
perform sensing. When the cognitive user senses the spectrum,
the cognitive transmitter is in receiving mode and tries to
detect the primary’s signal. If the cognitive transmitter detects
no primary user’s signal, it will then initiate communication
with the cognitive receiver.

Let s € CN(0, Py) be the transmit signal of the primary
user. When the primary user transmits, the signal received by
the cognitive transmitter can be written as

Yy =has+z 3)

where 2 ~ CN(0,02%) is the thermal noise. Denote the
received signal part without noise as

T = hgs.

Note that x is the signal (without noise) received at the
cognitive Tx from the primary Tx after experiencing path loss
and fading.

To sense primary transmission, the cognitive transmitter
needs to perform a hypothesis testing to decide between the
following two hypotheses:

Ho:y=z “4)
Hi:y=z+=z2. (5)

For sensing, we will first make the assumption that when
in detection mode, the cognitive transmitter knows perfectly
the channel Ay from the primary transmitter. This assumption
allows us to analytically derive the optimal detection threshold
in closed form. Then based on the optimal threshold, we pro-
pose a sub-optimal threshold that requires at Cx no knowledge
of the small-scale fading component in h4 but only knowledge
of the path loss component.

With the initial assumption of perfect knowledge of hq at
Ci, then z ~ CN(0,02) where

o2 = |hg|*Pr. (©6)

2 over the small-scale fading is then equal

The average of o

to
o2 = Ey, [|ha/*P1] = 3 P1. @)

=

These values will be used in designing the sensing threshold.

III. NETWORK CAPACITY AND BAYESIAN COST
FORMULATION

Consider spectrum sensing based on energy detection, in
which the cognitive user detects the signal energy in order to
decide whether to start its own transmission. In this process,
a sensing threshold is set by the cognitive user to optimize
a sensing objective. In this paper, we consider 2 different
sensing objectives: the network weighted sum capacity, and
the more traditional Bayesian cost. The capacity objective is
motivated from a communication perspective, in which the
transmission rate is an important performance measure. The
Bayesian objective is traditionally used in radar detection to
detect the presence of a signal by minimizing a combination
of the false-alarm and miss-detection probabilities. In studying
both of these objectives, we are able to contrast and compare
the impact of objectives on the sensing performance.

A. Capacity formulation

To formulate the primary and cognitive users’ rates, we
first describe how the network operates. The primary user
starts its communication with a certain probability A;. The
cognitive user senses the spectrum by comparing its received
signal power with a predetermined threshold. Since there is
only one cognitive user, this user transmits if it perceives
idle spectrum. However, the sensing decision can be wrong.
When the primary user is not transmitting, wrong sensing
decision gives rise to false alarm and the cognitive user wastes
the idle bandwidth. When the primary user is transmitting,
wrong decision produces miss detection and the cognitive
user’s transmission subjects both the primary user and itself
to interference. Accordingly, the ergodic capacities of the
primary user (Cjp) and the cognitive user (C.), averaged over
all locations S¢, Spr, Spe in the network and the fading in
detection, can be formulated as in (8) and (9) where

e A; is the transmission probability of the primary user.

e 7y is the sensing threshold.

o P(Ho|H1,7) is the miss-detection probability, when the
cognitive transmitter makes a decision to transmit while
the primary transmitter is also active. Denote

p=PMHi[Hi,7) =1—P(HolH1,7).  (10)

e P(Hi|Ho,7) is the false-alarm probability, when the
cognitive transmitter makes a decision not to transmit
while the primary link is idle. Denote

q = P(Ho|Ho,v) =1— P(Hi|Ho,7v). (11)

e L, and L. are the random received signal power at the

primary and cognitive receiver as
Ly, = |hp*P1, L.=|h|*P.. (12)

e I and I, are random interference power from the
cognitive transmitter to the primary receiver, and from the
primary transmitter to the cognitive receiver, respectively.

Ipc = |hpc|2pc ) Icp = |hcp|2P1- (13)

« For ergodic capacity, the innermost expectation is per-
formed over the small-scale fading of the respective
channels.

Note that the capacities as formulated in (8) and (9) are
averaged over the fading component 74 in signal detection
because the threshold depends on hy. (Later, we propose
a sub-optimal threshold that removes the small-scale fading
dependency.) Our goal now is to maximize the network
weighted throughput defined as

C=pCy+ (1 —p)Ce = Es, 5,5, En, [ap +bg+c] (14)

where 0 < p < 1 is the weight to emphasize the importance of
either the primary or cognitive link, p and ¢ are given in (10),
(11), (15), (16), and (17). Here a captures the capacity terms
associated with primary user transmitting, b with primary user
not transmitting, and ¢ captures the common capacity terms.
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L. Le
Cu= B, B | (1= APl B gy (14 2 ) | + 0Pt oy (14 ) [
2 z cp
L L Le
4= uME |:10g2 <1 + U_g)] —uME |:10g2 <1 + UngIpc>:| (= E |:10g2 (1 + m)} (15)
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b= (1-p)(1-M\)E [1og2 (1 + ;)} (16)

= B logy (14 =2 )| + (1= WA [log, (14 = 0
C= U AL OgQ 0_3 + Ipc )AL OgQ 0—3 —+ Icp

B. Bayesian cost formulation

Another objective which is common in spectrum sensing
involves minimizing the false-alarm and miss-detection prob-
abilities. In this section, we consider a Bayesian cost function
as a linear combination of both probabilities as

R = R P(Hol|H1,v)A1 + ReP(Hi|Ho, v)(1— A1),

where R, is the cost associated with miss detection and Ry
is the cost associated with false alarm. These two costs are
designed to take into consideration the effects on interaction
in the network as follows.

Since when miss detection occurs, both links interfere with
each other, R, can be set as

Ry :6(jpc+jcp) ; (19)

where 3 > 1 is a penalty parameter to emphasize the cost of
miss detection, hence placing a higher priority on the primary
link, and I, and I, are the averages over the small-scale
fading of the interference powers in (13).

When a false alarm occurs, the cognitive user misses its
chance to achieve a higher rate, thus R; can be set as the
average power L. received by the cognitive receiver

Ri=L..

(18)

(20)

Here L. is average of L. in (12) over the small-scale fading
(that is, L. = E, [Lc)).

Taking into account the random locations of the transmitters
and receivers and the channel fading in detection, the cost in

(18) can then be written as
= ESC,--,SP.-.,SP[ Ey, 5(jpc + jCP))‘lp(HO|H17 20)

+ L.(1— /\1)P(H1|H0,7)} . 2D

In this formulation, the goal is to minimize this Bayesian cost
function.

C. Channel knowledge requirements

We have set up the two different sensing objectives. The
capacity objective (14) is a non-linear function of the received
signal and interference powers, whereas the Bayesian cost
objective (21) is a linear combination of these power terms.
Each objective will be used to design the correspondingly
optimal sensing threshold.

1) Channel knowledge in each formulation: In both formu-
lations, we assume no channel state information at the trans-
mitters. The Bayesian formulation also requires no knowledge
of instantaneous channel realizations at the receiver side, but
only knowledge of the channel distribution. The costs in (19)
and (20) are received or interference power averaged over
fading. For the capacity formulation, even though all capacity
terms in (8) and (9) are ergodic which is averaged over fading,
each receiver need to know the instantaneous channel from
its corresponding transmitter for Shannon capacity formula to
apply. Specifically, the primary receiver need to know h, and
the cognitive receiver to know k.. However, since interference
is treated as noise, each receiver is not required to know
the interference channel — the receiver only estimates the
composite noise and interference power.

In performing detection and hence computing the miss-
detection or false-alarm probabilities (in (8), (9) and (18)), the
received signal power at the cognitive transmitter is compared
with the threshold, but obtaining this received power does
not require knowing the channel realizations. (This would
only be required if the cognitive user wanted to estimate the
primary transmit signal, but here it merely wants to detect the
presence of this primary signal.) For threshold computation, as
mentioned earlier, we first assume instantaneous knowledge of
channel hq, but then remove the requirement of instantaneous
knowledge of the small-scale fading component as discussed
later in Section IV-C. Thus performing detection will require
only knowledge of the channel distribution.

In short, the Bayesian formulation only relies on knowing
the fading distributions at the receivers. But the capacity
formulation requires each receiver to know the instantaneous
fading realizations from its own transmitter. This instantaneous
channel knowledge, however, is often already in-place for
received signal estimation.

2) Obtaining channel distribution for detection: Channel
distributions can be obtained based on channel models or
on long-term measurement of the channels, which can be
carried out in advance for a specific environment. In case
the cognitive user wishes to concurrently measure the fading
distribution between the primary transmitter and the cognitive
transmitter, several methods may be employed. One can be
that the cognitive user measures the fading distribution of the
channel between its own transmitter and receiver, using its own
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training sequences, and assume the same fading distribution
for the channel from the primary user, who transmits in
the same environment. Another can be that the cognitive
user “piggybacks” on the primary user’s training sequences
when the primary users is detected to be active. For primary
systems built according to a certain standard, this method is
plausible since primary training sequences are known a priori.
Furthermore, the cognitive user only uses these sequences
to measure the channel distribution, not the instantaneous
channel.

In this paper, we assume Rayleigh fading (2), but the
analysis and subsequent threshold designs are also applicable
to other fading distributions.

IV. THRESHOLDS WITH FULL LOCATION SIDE
INFORMATION

From the point of view of the cognitive transmitter, the
locations of the other three radios in the network are side
information that can be used to help design the sensing
threshold. However, these locations may or may not be known
to the cognitive transmitter. In this section, we consider the
case of full knowledge of location information, i.e., Cix knows
the locations of its own receiver and of both the primary
transmitter and receiver. Then in the Section V, we will
explore the partial information cases.

A. Optimal threshold for the capacity sensing objective

With full location side information, maximizing the objec-
tive (14) is equivalent to maximizing ap + bq + ¢ for each
realization of {Sy(, Spr, Scr}. The signal power received at the
cognitive Tx from the primary Tx follows the two degree
chi-square distribution in both primary transmitting and non-
transmitting situations with different variances. Thus, for each
set of {Sp, Spr, Ser}, We can express the objective function as

ap +bq+c

o0 1 é-
- 5 02402 P 02402 a
71
+b/ —2exp<—%> dé +c
0o 0% 0z

v v
—e o (i) b e () o
= f()-

Our goal is to find v > 0 to maximize f(vy). From (15) and
(16), we observe that the coefficient b is always positive, but
a can be non-positive in some locations under certain primary
transmission probabilities.

When a < 0, to maximize (22), the threshold should be set
to infinity, implying the cognitive radio always transmits.

When a > 0, take the first derivative of (22) as

p a ¥ b vy
=————¢ - — e —— .
Fo) = Xp( ag+a;>+ag Xp( az)

Equating this derivative to zero, we obtain an optimal point
as

(22)

2 2 2
y=(02+02) Z (ﬂé) . (23)

2
o2 a

To ensure that this point is the maximum, obtain the second
derivative of (22) as

oy @ 7 \_20 _
o= ey ex"( az+az> = eXp( a)

To be a maximum point, the second derivation should be
negative at this point, thus,
2 2\ 2
o +o b
(%) —] . 24)
lop a

The optimal value (23) always satisfies condition (24), hence
f(v) is maximized at this value.
Thus the optimal sensing threshold can be obtained as

2 2 Ug
v < (02 +03) = In
T

00, if a <0,

2 2 2 b
(02 +02) _1(;) if a> 0.
(o o; a

C

= (25)

For some set of locations, y{ can be negative, implying that
Cix always stays silent. This situation can happen, for example,
when the primary users activity factor is high (A is near 1)
and the cognitive transmitter is close to the primary receiver,
or the cognitive receiver is close to the primary transmitter
(so that the interference I, or I, is high). In such a case, the
value of a in (15) will be large and the value of b in (16) will
be small, causing the threshold in (25) to be negative.
The capacity-optimal threshold can thus be written as

~v* = max (0,77) . (26)

The network weighted sum capacity can be computed using
this optimal threshold for each realization of {Sp, Ser, Spi}
and 7g, then averaged over all location and 7y realizations.

B. Optimal threshold for the Bayesian sensing objective

For the Bayesian sensing objective, minimizing the cost in
(21) is equivalent to minimizing this Bayesian cost for each
specific set of locations Sy, Ser and Sy as

§Rl = ﬁ (jpc + jcp))\l P(HO|H177)
+ Le(1 — A\y) P(H1|Ho,7) .
Taking into account the complex Gaussian distribution of the

received signal y in both hypotheses (4) and (5), the optimal
decision rule in the Bayesian criterion is

6 (jpc + jcp)Al P(|y| | Hl) 7;1

27)

S 1
Lc(]- - )‘1) P(|y| | HO) 7?0
P
2|y| e o'% + Uz B
o2 4 o2 Tol-)\ L. (28)
i Ho A BT+ L)
2yl T o2
02

Thus the optimal threshold can be computed as
02 1-— )\1
In(l4+ = 1
(e 5) e (50)
L
+In| —F——== .
@@ﬁmﬂl

b Ug 2 2
M= _2(0r+0z)
Ul

(29)
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Fig. 2. Network throughput for two different sensing thresholds.

For the same reason as in the capacity-optimal threshold,
the Bayesian-optimal threshold can be written as +* =
max (0, *yi’). For either threshold, the detection decision fol-
1
lows as |y|> 2 1.
Ho

C. Sub-optimal thresholds independent of channel fading

The optimal thresholds in (25) and (29) are function of
ag, which depends on the realization of channel hy as in
(6). Since obtaining the instantaneous realization of hgq can
be a cumbersome task for the cognitive transmitter, here we
propose sub-optimal thresholds that only requires knowledge
of the channel distribution (that is, only knowledge of vq4
but not 74). Specifically, we replace o2 in each threshold
expression with 52 averaged over fading as in (7).

Then the sub-optimal threshold can be obtained as ¥* =
max(0,41), where

« for the capacity objective,
if a <O,
2 =2 b
In (%—) it @ > 0.
a
(30)
« for the Bayesian objective,

2 ; 1-)
A UZ(&§+a§) 1n<1—|——;>—|—ln< 3 1)

52
(o) g 1

Qi

)
=
Il

L
B (Ine + Lp)
When computing the capacity in (14) or Bayesian cost in (21)
using sub-optimal threshold 4*, we no longer the need to take
the average over 7.

Figure 2 shows an example of the network throughput in
(14) (with ¢ = 0.5) obtained using both thresholds (30) and
(31), while Figure 3 shows the corresponding Bayesian costs
in (21) (with 8 = 1). (In Section VII, we provide more
results on the effect of varying p.) These plots show that

+1n (D)

4 T T T T
—»— Capacity Optimal Threshold
3.5 —¥— Bayesian Optimal Threshold

w

Bayesian Cost
n

i i

i i i i
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Priori Transmission Probabili'ty)»1
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Fig. 3. Bayesian cost for two different sensing thresholds.

the capacity-based threshold improves the network throughput
significantly compared to the Bayesian-based threshold, while
the Bayesian-based threshold has an advantage in reducing
the miss-detection and false-alarm probabilities. A consequent
question becomes: is it better to design the sensing threshold
to minimize the miss-detection and false-alarm probabilities
or to directly optimize the network throughput? The probabil-
ities of miss detection and false alarm are just intermediate
performance indicators, while the ultimate goal for a network
should be to operate at its maximum capacity. These results
reveal that Bayesian-based detection does not always imply
optimal network capacity.

V. THRESHOLDS WITH PARTIAL LOCATION SIDE
INFORMATION

As shown in Section IV, the locations Sy, Ser, Spe can
be used as side information by the cognitive transmitter to
adjust its sensing threshold accordingly. The intuition is that
better knowledge of location information can help improve
performance. To investigate this point, in this section, we
consider the following three cases of partial location side
information and one case of no information:

(A) Ci; knows S, Spi,

(B) Cyy knows Ser, Spi,

(C) Cyy only knows Sy,

(D) (' has no location information.
Except for case (D), these cases of partial location information
are different from the cases that we studied previously in [16]
and [17]. In all cases, we assume that o2 and o2 are known,
as these values can be estimated from stored sampled received
signals. Under this assumption, based on the channel model,
the cognitive transmitter is able to use o to deduce its distance
to the primary transmitter, but not the angle coordination of the
primary transmitter and hence, cannot know the primary trans-
mitter’s location precisely. For this reason, the chosen partial
location information cases (A), (B) and (C) are designed such
that the primary transmitter’s location is always known, thus
being consistent with knowing o2 and allowing the full use
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available information. Knowing the location of the primary
transmitter is also feasible in practice since the transmitter
is an active device. A challenge, however, in assuming the
knowledge of Sy in our network model of Figure 1 is that
instead of using the marginal distribution of Sy, as in (1), we
have to use the conditional distribution of S}, given Sy, which
is difficult to obtain analytically. This conditional distribution
is not uniform in the disc centered at C. Later in simulations,
we resolve to numerical methods to compute this conditional
distribution. The last case (D) is chosen for a comparison
basis.

A. When S, and S, are known

Since Cix has no knowledge of S, it should design the
threshold based on the objective function averaged over S
for each pair of {Spr, Spi}.

For the capacity objective, maximizing (14) is equivalent to
maximizing

®=%MA

71 Y
vBs ) [ oy 2Ry + B ld.
0 oz

N oy
1 2(c2 4 02) d

202 +02) Y

Then following similar optimal derivation as in Section IV-A
and sub-optimal approximation as in Section IV-C, we obtain
the capacity-based threshold for each pair of {Sy, Sy} as
4* = max(0,75), where

00, if Fg, [a] <0,

Y3 = N 02 +057 Es,[b] .
(O'Z + 01)6—% In 0_3 m if EScr[a] > 0.
(32)

The difference between this case and the full location infor-
mation case is that in the threshold, the capacity variables a
and b are averaged over the unknown location, and whether
the threshold is set to infinity depends on the average of a.

For the Bayesian cost objective, minimizing (18) is equiv-
alent to minimizing

§]CEZ = ﬁ (jpc + ESCr [jcp]) )\1 P(HO|H17 7)

+ Es, [L](1 — A1) P(H1|Ho,7) .

Similar to the analysis in Sections IV-B and IV-C, the
Bayesian-based threshold can be derived as ¥* = max(0,73),

where
2 )
b _ Oz (-2 2 o, 11—\
e G ) (1 G ) o (552)

Es, [Ld]
+m@@wﬂﬁwﬂm ¢y

The difference between this threshold and the one with full
location information is that the power variables L, I,c and
I, are averaged over the unknown location.

Since the threshold v is now derived for each pair {Spr, Spt},
the detection probabilities P(Ho|Ho,y) and P(Ho|H1,y) are
also for a specific {Spr, Spi} pair. Thus to compute the capac-
ities of the primary and cognitive users, for each threshold ~,

we need to average the affected log terms over the unknown
location S, together with averaging over the channel fading.
In this case, S, only affects the cognitive user’s capacity
through the received power L., hence the cognitive user
capacity is computed as

L.
C. = Es,, s, [Alp(Homoﬁ) - Es, {E [1og2 (1 + ;)} }

L
+ M P(Ho|H1,7) - Es, {E [k’g? (1 i m)] H '
(34)

Computing the primary user’s capacity is unchanged from (8),
but without expectation over 7q.

B. When S, and Sy, are known

Similar to case (A), since Ci does not know S, the
affected terms in each objective function should be averaged
over all Sy, for each given pair {S, Sp}. The threshold for
each pair {Sc, Sy} can be shown to be 4* = max(0,¥3)
where

« for the capacity objective, see (35)

« for the Bayesian cost objective,

a2 1—X\
In(1+ 2% 1
(03 em (5

L.
+1n (ﬁ AT )] (36)

In this case, S, only affects the primary link capacity
through the received power Ly, so the primary user’s capacity
is computed as

L
OP = ESCHSP[ |:A1P(H1|H17Fy) ' ESP"{E |:10g2 <1 + 0._;)):| }

L
+ M P(Ho|H1,7v) - ESpr{E {logQ (1 * UETPIPC>:| H’
(37)

while the cognitive user’s capacity is computed as in (9)
(without expecting over 74).

~ Ug _2 2
V3 = ,_2(0'1 +Uz)
O-ZIJ

C. When only Sy, is known

As Ci only has information of Sy, the affected terms in the
objective functions are averaged over both S, and Sy. The
threshold for each Sy can be shown to be 4* = max(0,74)
where

« for the capacity objective, see (38)

« for the Bayesian cost objective,

a2 1-XN
In(1+ 2 |
(10 3) e (5

Es,|Lc]
o (sresererm) |

In this case, since S, and Sy, are not known, P(Ho|Ho, )
and P(Ho|H1,y) are specific for each Sp. The primary and
cognitive capacities can be computed as in (37) and (34),
respectively.

|NNJ

(62 +02)

- o
Y4 = =
o

8N
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o0, if B [a] <0,
Ry — 2 2 =2
3= _2y9% 0% + Oz Esr[b] . (35)
(02 + Uz)? In <T ESP ] if Eg, [a] >0 ;
x z pr
OO? lf Escnspr[a] < 0 4
Sp— 2 2 =2
Y4 = 2 ~2 o 0 + Oy EScnSpr [b] . (38)
2 fE >0;
o (S ) sl

D. When no location information is available

In this case, both objective functions are averaged over all
the locations. There is only a single threshold for all sets
of locations. The capacity-based threshold is obtained from
(30) by averaging a and b over all locations. Similarly, the
Bayesian-based threshold is obtained from (31) by averaging
each of the variables L, I, and I, over all locations. The
capacity of each user can be computed as in (8) and (9) but
without execution over 74, using a single threshold for all
locations.

VI. GENERALIZATION TO A NETWORK WITH MULTIPLE
COGNITIVE USERS

For a network with multiple cognitive users, there are
two separate issues: how each user senses the spectrum, and
how all the users then use the spectrum sensing results to
communicate. The first issue relates to the sensing technique
performed by each user, whereas the second relates to the
network protocol among the cognitive users. In this paper,
we provide an answer to the first issue by showing that
the proposed sensing designs can be extended to multiple
cognitive users in a distributed manner. The second topic is
outside the scope of this paper, and to this extent, we only
provide some discussion and pointers to other references.

A. Sensing technique

Consider a cognitive network with n cognitive users who
wish to sense the spectrum. The proposed sensing designs can
be extended to this case in a distributed manner. Each cognitive
user only needs to use local information on the locations
of its own receiver and the primary transmitter and receiver.
Each cognitive radio can sense the spectrum independently of
others; in this way, they do not need to synchronize.

The interference from other cognitive users is averaged over
fading and all locations and is treated as additional background
noise. To account for the fact that not all cognitive users
may be active, we introduce an active factor 6 < 1, such
that the number of cognitive user concurrently transmitting is
on. The specific § value can be obtained through analytical
modeling or simulation. Assume that all cognitive users follow
the same spatial distribution as introduced in Section II.
Specifically, from the perspective of each cognitive transmitter
(independent of other cognitive users), the primary receiver
is uniformly distributed within a disc centered at it, and its
cognitive receiver is also uniformly distributed within a disc of
different radius. (The analysis also applies if we instead choose

the primary receiver to be the origin, so that all cognitive
transmitters are uniformly distributed around the primary
receiver, possibly within different radii, and each cognitive
receiver is uniformly distributed around its respective cognitive
transmitter.) A cognitive transmitter can then compute the
average interference power from other active cognitive users
and treat that as additional noise in its threshold calculation.
The effective noise powers at the primary receiver, cognitive
receiver and cognitive transmitter respectively become

o2 =02+ 5nfpc
o2 =02+ 35(n—1)lu
02 =02 +6(n—1)Iy

(39)

where pr, fcr and fct are respectively the average interference
(averaged over fading and all locations) from each cognitive
transmitter to the primary receiver, and from each interfer-
ing cognitive transmitter to a specific cognitive receiver and
transmitter.

This way of extension allows each cognitive user to use
the proposed threshold designs directly and independently of
other cognitive users. Since the interference is averaged over
fading and over all locations, each cognitive user only needs
to know the total number of cognitive radios and their activity
factor in order to compute the effective noise power (39). This
effective noise is then used for designing the sensing threshold
locally at each cognitive radio, using the proposed designs.

As an example, we establish the capacity sensing objective
for each user. The Bayesian cost objective can be derived
similarly. For the i-th cognitive user, the capacity sensing
objective now becomes (40). Here Li is the received signal
power at cognitive receiver ¢ from its own transmitter, and
Igc (ij) is the interference power at the primary receiver
(cognitive receiver ¢) from the cognitive transmitter ¢ (primary
transmitter). Note that because of the averaged interferences
in the effective noises, (40) as defined is not the same as
the weighted sum capacity averaged over the locations of
all cognitive users, which would require the instantaneous
interferences from all other users and then averaging the
resulting capacity over those user locations. However, we
choose this objective function because it allows a distributed
application of the proposed sensing designs, without requiring
the knowledge of the locations of other cognitive users. The
sensing threshold for cognitive user ¢ can then be designed
based on the solutions for the single primary and single
cognitive user case in Sections IV and V.
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pi = P(Hi|H1,7vi) » ¢ = P(Ho|Ho,vi) 41)

B. Cognitive network operating protocol

Given the sensing result at each cognitive user, how these
users then use this result to communicate, and their subsequent
performance, depend on the network protocol among the
cognitive users. This topic is outside the scope of our paper,
here we only discuss briefly.

If each cognitive user transmits independently of other
cognitive users, according to its own sensing decision, then
as the number of cognitive users increases, how the network
throughput behaves becomes a question of scaling law. This is
an entirely different focus which has been studied extensively
for homogeneous networks (see [18], [19]), and more recently
for cognitive networks [20]. For example, the throughput may
scale as squared root of the number of users. Studying of
scaling law requires asymptotic analysis that depends not only
on the spatial distribution of the cognitive users but also on
how they process and forward signals.

On the other hand, if the cognitive users have a specific
network protocol that dictates who (or how many) to transmit
if the spectrum is sensed vacant, or how to collaborate among
themselves, then the performance will depend on this protocol.
There have been sizable research efforts on collaborative
sensing and access policy for secondary spectrum access (see
for example [12], [21]).

As an example, suppose each cognitive user independently
transmits with a certain activity factor based on its own sensing
decision, then the resulted network throughput, averaged over
all users locations, can be computed as in (42). In this
expression, 1 denotes all channel fading, S is the set of
locations of the primary Tx, Rx and all cognitive Tx’s and
Rx’s, J C {1,...,n} is the subset of active cognitive users, p;
and g; respectively are as defined in (41) (which are one minus
the probabilities of miss detection and false alarm of cognitive
user 4 respectively), and 12! is the interference from cognitive
transmitter [ to cognitive receiver j. The first summation term
in (42) denotes the average capacity of the primary user,
taken into account all combinations of miss detection by the
cognitive users. The second summation is the average capacity
obtained by all cognitive users who miss-detected, and the
third term is by cognitive users without miss detection nor
false alarm. Later in simulation, we plot this throughput for

a network with 2 cognitive users, showing that the proposed
sensing schemes when applied to a multiple cognitive user
network also capture the benefit of local location information.

VII. NUMERICAL RESULTS
A. Simulation methods

1) Single cognitive single primary network: For simula-
tions, we use the model in Figure 1 and set the network radii
R. = R, = R; = 10, the protection region ¢ = 1 and the path
loss parameter o« = 2.1. The primary and cognitive transmit
power and the thermal noise are set such that at the edge of
a disc, the SNR is 0dB. For the case of full knowledge of
location information, we first generate 3000 sets of locations
Spt, Spr, Ser. For each set, 10000 Rayleigh fading channels are
generated per link. Then the capacity- and Bayesian-based
thresholds are computed respectively. Detection is performed
using these two different thresholds. After obtaining miss-
detection and false-alarm probabilities, the Bayesian cost and
capacities are computed.

For partial location information case (A), when S, is not
known, 3000 pairs {Sp, Sy} are first generated. And for each
pair, another 3000 locations for S, are generated according
to (1) to compute the average values L, I, and the average
of a and b in thresholds (33) and (32). Then the capacities are
calculated according to (8) and (34).

In cases (B) and (C) discussed in Section V, the distribution
of Sy is altered by the knowledge of Sp. In other words,
we must compute the conditional distribution of Sy given
Spt. To do this, we need to use the coordinates of Sy with
respect to the absolute origin (which is C) instead of using
its radius and angle with respect to P,y as modeled. Hence we
use p to specify this distance to the absolute origin, instead
of r which is the radius to a specified centered point (such
as Px). To numerically compute the conditional distribution
of Spe given Sy, first, we quantize Psy into 100 equal-sized
bins and pg .0, .05 into 50 equal-sized bins within their
respective ranges. Then we obtain the joint conditional prob-
ability distribution function f(py .0, |ps,,0s,), Which en-
ables us to compute the joint distribution f(p S 0 s P> 0 spl)
and eventually the cumulative distributions F'(p, 0, ) and
F(ps,,0s,1ps, - 0s,). With these two cumulative distribution
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functions, for case (B), we can first generate 3000 pairs
{Ser, Spt }, then for each pair generate 3000 locations for Sp;.
Similarly, for case (C), we first generate 3000 locations for Sy,
then for each of these locations, generate 3000 pairs {Scr, Spr}.
These random generations allow us to calculate the respective
average parameters in the thresholds. Then after obtaining the
miss-detection and false-alarm probabilities for each set of
locations, the corresponding Bayesian costs and capacities can
be calculated.

In case (D) of no location information, we use the same
set of locations as generated in the case of full location
information, but compute only a single threshold for all
the locations. Using this threshold, the Bayesian costs and
capacities are computed by averaging over all locations.

2) Multiple cognitive single primary network: In this sim-
ulation, two cognitive users and one primary user are included
in the network. The same radius parameters R. = I, = R; =
10 apply to both cognitive users. We only consider the cases of
full location information and no location information here. A
cognitive transmitter is chosen as the origin, and the locations
of the primary receiver and transmitter are generated in the
same way as in the single cognitive user case. The location of
the second cognitive transmitter is then generated uniformly
within a radius R; around the primary receiver. The location
of each cognitive receiver is generated uniformly within a
radius R, around its cognitive transmitter. (All the analysis
results and simulation methods also apply if we instead choose
the primary receiver to be the origin, so that the roles of all
cognitive users are symmetric.) In these simulations, we set
0 = 1, so that either cognitive user transmits if it senses no
primary transmission. Then the threshold for each cognitive
user is computed using local location information as in (40)
and the network sum capacity is computed as in (42).

B. Results and discussion

As shown by the simulation results in Section IV, the
capacity-based threshold is more effective than the Bayesian-
based threshold from a communication perspective, when
evaluating based on the communication rate. In this section,
we provide further comparison between these two threshold
designs and also reveal the effectiveness of each design
in capturing the benefit of location information, using both
criteria: capacity and Bayesian cost.

1) Network throughput with capacity-based design: In
Figure 4, using the capacity-based thresholds, we plot the
network sum capacity, or throughput, (twice the objective
(14) with u = 0.5) as a function of \; with full and partial

2.4 T

23

2.2

N
o

Capacity

Fig. 4. Network throughput using the capacity-based threshold with full and
partial location information.

location information. The plot shows that location information
improves the network throughput, which agrees with intuition.
Moreover, location information is more useful for network
throughput as A; increases. Results also show that to the
cognitive Tx, information on the location of its own receiver
is more beneficial than that of the primary receiver, resulting
in a higher network sum capacity.

Figures 5 shows the capacities of the primary and cogni-
tive users separately. Interestingly, more information in this
case helps improve the capacity of the primary user while
penalizing the capacity of the cognitive user. This impact
depends on the weight i in the capacity objective function
(14) and may reverse as p decreases, placing more emphasis
on the cognitive user capacity. Also plotted in Figure 5 are the
individual capacities obtained by the Bayesian-based threshold
for the case of full location information. Compared to the
Bayesian-based threshold, the capacity-based threshold helps
to significantly boost the capacity of the cognitive user. When
A1 approaches 1, the cognitive user’s capacity with Bayesian
threshold drops to near zero, while with the capacity-based
threshold, the cognitive user can still maintain a significant
capacity. This gain in cognitive user’s capacity, however,
comes at a cost to the primary user’ capacity. As \; increases,
the primary user’s capacity decreases from its maximal value
with Bayesian-based threshold by up to 25%. This negative
impact on the primary user’s capacity can be lessened by
increasing p in the objective (14).
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Fig. 5. Capacity of the primary user (above) and cognitive user (below) using
the capacity-based threshold. Superimposed in the dotted-line for comparison
is the corresponding capacity using the Bayesian-based threshold with full
location information.
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Fig. 6. Capacity of the primary user using the capacity-based threshold with
different p. Superimposed in the red dotted-line for comparison is the primary
user’s capacity using the Bayesian-based threshold.

2) Impact of v on performance: Figure 6 shows the primary
user’s capacity with full location information for different
values of p. As expected, increasing p helps improve the
primary user’s capacity. When p = 0.8, the capacity obtained
with capacity-based threshold is almost the same as with
Bayesian-based threshold (superimposed in the red dotted-
line). When g = 0.9, capacity-based threshold supersedes
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Fig. 7. Network throughput using the capacity-based threshold with different
. Superimposed in the red dotted-line for comparison is the throughput
obtained using the Bayesian-based threshold.
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Fig. 8. Bayesian cost using the capacity-based threshold versus .

the Bayesian-based threshold in the resulted primary capacity,
which is almost the same as that without the presence of
the cognitive user (when p = 0.99). The capacity of the
cognitive user understandably decreases with increasing p, as
confirmed by simulation (not shown here). Figure 7 shows the
network throughput (the sum of the capacities of the primary
and cognitive users) for different ;. Also superimposed in the
red dotted-line is the throughput obtained with the Bayesian-
based threshold, as plotted in Figure 3. The result shows that
for p as large as 0.8, the capacity-based design still achieves a
higher overall throughput (compared to the Bayesian design)
at a negligible impact on the primary user’s capacity. Only
when p is increased to around 0.9 that the throughput suffers.

Another question is about the impact of ; on the Bayesian
cost. As increasing p improves the primary user’s rate but
reduces the cognitive user’s rate, would it also reduce the
Bayesian cost? Simulations as shown in Figure 8 confirms
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Fig. 9. Bayesian cost using the Bayesian-based threshold with full and partial
location information.

No location information

(9]
T

Bayesian Cost
N
T

w

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 10. Bayesian cost using the capacity-based threshold with full and
partial location information.

this general trend. Interestingly, when p = 0.99 (virtually
ignoring the cognitive user), the resulting Bayesian cost is
actually increased (compared to y = 0.9). Thus focusing only
on the primary user’s capacity and ignoring the cognitive user
is not a good strategy from both the network throughput and
Bayesian cost point of views.

3) Bayesian cost and impact of location information:
Figure 9 shows the Bayesian cost using the Bayesian-based
threshold with full and partial location information. In the
Bayesian cost, we see a higher impact of location information
than in the network throughput. For example, compared to just
knowing Sy, the additional knowledge of S, can reduce the
cost by 35%, while the full knowledge of location information
can reduce the cost by up to 50%. Different from the network
throughput in Figure 4 which gains more from location
information as \; approaches 1, the Bayesian cost benefits
more from location information as A; approaches 0.5.

Capacity

Fig. 11.  Capacity using Bayesian-based threshold with full and partial
location information. (Solid lines are for the cognitive link and dotted lines
are for the primary link.)

4) Impact of location information when using the “other”
threshold: Moreover, it is interesting to investigate the impact
of location side information on each objective when using the
other threshold. Figure 10 shows the Bayesian cost when using
the capacity-optimum threshold and Figure 11 shows the two
users’ capacities when using the Bayesian-optimum threshold.
Although the capacity-based threshold cannot minimize the
sensing cost, results in Figure 10 indicate that it still captures
the advantage of location information. The sensing cost is
lowest with full location information and highest with partial
location information of only Sy. On the other hand, when
using the Bayesian-based threshold, Figure 11 shows that the
knowledge of location information at the cognitive transmitter
has a negligible effect on the capacity of the primary user,
which is a positive aspect. However, the impact of side infor-
mation on the cognitive user’s capacity is more complicated.
Using the Bayesian-based threshold, more information does
not necessarily improve the capacity of the cognitive user.
Specifically in the range of \; < 0.5, cases (A), (C) and (D)
with partial or no information actually result in higher capacity
than the case with full information. This result is against our
understanding of the information principle (information never
hurts [22]) and is another evidence that the Bayesian cost
objective, which is an intermediate performance measure, is
not as good as the capacity objective in designing a sensing
threshold.

Nevertheless, the Bayesian-based threshold has an advan-
tage in that it brings little or no loss to the primary user’s
capacity while also harvesting some rate for the cognitive user.
In the case that the primary user pays for the spectrum usage
and the cognitive user does not, the Bayesian-based threshold
may be a suitable candidate since it can maintain the primary
user’s capacity regardless of location information available to
the cognitive user. Alternatively, the capacity-based design can
be used with a suitably chosen value .

As another observation, in all cases (A), (C) and (D),
information on S, is missing. Thus the lack of knowledge
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Fig. 12.  Sum capacity for a network with 1 primary and 2 cognitive users

using the capacity-based threshold with local location information.

about the location of its own receiver appears to have a
dramatic effect on the cognitive transmitter in adjusting its
Bayesian-based threshold, such that the capacity is higher
than that with knowing S.,. Within the group without S,
knowledge, however, the cognitive user capacity increases
with more location information, in line with expectation.

5) Multiple cognitive single primary network: We applied
the proposed sensing threshold designs to a network with 1
primary and 2 cognitive users. Each cognitive user designs its
sensing threshold independently, using only local information
on the location of its receiver and of the primary transmitter
and receiver. Figure 12 shows the network throughput as the
sum capacity of all 3 users using the capacity-based threshold
design for the two cases of full location information and no
location information to each cognitive transmitter. Again we
observe that just local information helps increase the network
throughput. A closer look at the individual capacity of the
primary and a cognitive user in Figure 13 shows that unlike the
example of the single cognitive user in Figure 5, information
helps increase the capacity of both primary and cognitive users
in this case.

C. Some concluding remarks

In this section, we have presented two major comparisons:
between two objective functions (capacity vs. Bayesian) and
between different cases of location information. For the first
comparison, results show that the capacity-based sensing
threshold design is broadly better than the Bayesian-based
design. It produces a higher network throughput and better
captures the benefit of information in both measures (capacity
and Bayesian cost). An intuitive reason is that the capacity
objective is a communication performance measure which is
more suitable for cognitive communication than a detection
measure as the Bayesian objective. For the second comparison,
the cases of location information, as specified earlier in
Section V, are chosen based on the assumption that it is
relatively easy for the cognitive users to detect the location of
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Fig. 13. Capacity of the primary user (upper) and a cognitive user (lower)

in the network of 1 primary and 2 cognitive users.

the primary transmitter (Sp,;). Hence Sy is included in all cases
of location information (A, B and C). These cases are then
differed on the knowledge of locations of the receivers (which
are usually harder to detect). Results show that in most cases,
as expected, more information results in better performance.
Comparing between knowing the location of either receiver, it
appears to be more favorable for the cognitive transmitter to
know its own receiver location rather than the primary user’s
receiver location, as shown in Figures 4, 9 and 10.

VIII. CONCLUSION

We have considered energy detection spectrum sensing
based on two different objectives, minimizing a Bayesian
sensing cost and maximizing the network weighted sum ca-
pacity. The sensing thresholds for each objective with different
cases of location side information are derived in closed-form.
Results show that the Bayesian cost is much more sensitive
to location information than the capacity. The Bayesian-based
threshold has the advantage that it affects the primary user’s
capacity little in all cases of side information. But because the
Bayesian sensing cost is an intermediate performance measure,
the Bayesian-based threshold produces low network through-
put and does not utilize the side information well to improve
the transmission rates. On the other hand, the capacity-based
threshold results in a much higher network throughput and
captures the benefit of location side information in both the
transmission rate and sensing cost measures. The impact on
the individual user’s capacity can be controlled by adjusting
the weight in the capacity objective function. These results
show that choosing a suitable objective function is critical in
designing a sensing scheme.
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