
An Asymptotically Capacity-Achieving Scheme for the
Gaussian Relay Channel with Relay-Destination Cooperation

Ahmad Abu Al Haija
Department of Electrical & Computer Engineering

McGill University, Montreal, QC, Canada
Email: ahmad.abualhaija@mail.mcgill.ca

Mai Vu
Department of Electrical & Computer Engineering

Tufts University, Medford, MA, USA
Email: maivu@ece.tufts.edu

Abstract—This paper shows that the capacity of the relay chan-
nel can be asymptotically achieved by allowing relay-destination
cooperation. Consider a scheme with rate splitting and second-
order superposition block Markov encoding at the source, partial
decode-forward (PDF) relaying and joint decoding over two
consecutive blocks at the relay, and quantize-forward relaying
and backward decoding at the destination. This scheme includes
as special cases the classical PDF scheme and the destination
feedback scheme of the relay channel. In Gaussian channels,
the proposed scheme outperforms noisy network coding scheme
except for weak source-relay link. For all channel gains, it
asymptotically achieves the capacity by reaching the cutset bound
as the destination power approaches infinity.

I. INTRODUCTION

Recently, cooperative communication has received a height-
ened research interest as an efficient method to improve the
achievable rates of multi-user channels. As the relay channel
resembles the basic model for cooperation, it is important to
understand the theoretical limits for cooperative scenarios in
a relay channel.

The relay channel was first introduced by van der Meulen
in [1]. Cover and El Gamal in [2] propose several fundamental
coding schemes for this channel including the decode-forward
(DF), partial decode-forward (PDF), and compress-forward
(CF) relaying schemes. As these schemes assume full-duplex
operation at the relay, an extension to the half-duplex mode is
studied by Host-Madsen and Zhang in [3].

In the schemes in [2], [3], the relay receives signals from
the source only. However, in practical applications such as the
uplink in cellular networks, the destination has much more
power than the mobiles. It is then of interest to study how the
destination can cooperate with either the source or the relay in
order to increase the achievable rate. In this paper, we focus on
the relay channel with relay-destination cooperation (RDC).

The relay channel with RDC is first defined in [2] as a
relay channel with destination feedback. It is shown in [2]
that if the relay has causal knowledge of the channel output
at the destination, the DF scheme is capacity achieving since
the channel becomes a physically degraded channel. Gabbai
and Bross in [4] provides coding schemes based on DF and
CF for the relay channel with causal, perfect feedback from
the destination or the relay to the source. In [5], Jiang et al.
consider more realistic scenarios where the feedback informa-
tion is non-causally available at the relay or the source. They
propose different coding schemes for the relay channel with
relay-source cooperation and relay-destination cooperation.

In this paper, we consider the relay channel with RDC and
show how this cooperation helps achieve the capacity asymp-
totically. We propose a coding scheme in which the source
splits its message into a private and a public part and employs-
second order superposition block Markov encoding; the relay
employs PDF relaying and simultaneous joint decoding over
two consecutive blocks; and the destination employs quantize-
forward (QF) relaying and backward decoding. Different from
the destination feedback scheme (DFB) in [5] where transmit-
ted signal in block i depends the signal transmitted in block
i− 2 only , the transmission in block i in the proposed RDC
scheme depends on the signals transmitted in both blocks i−1
and i − 2. Moreover, the relay in RDC decodes the public
message part and the quantization index using joint decoding
instead of the sequential decoding as used in the DFB in [5].

This paper proves that the proposed scheme is asymp-
totically capacity achieving when the destination power ap-
proaches infinity. This result agrees with the intuition that
when the power approaches infinity, the destination virtually
joins the relay in one entity because of the infinite capacity
feedback link. This scenario is approximately feasible in
practice when the destination power is much higher than
the source power as in the uplink of cellular networks. For
non-asymptotic regimes, the papers provides numerical results
comparing between the proposed RDC, DFB [5], NNC [6] and
the cut-set bound. Numerical examples show that the proposed
RDC is better than the existing schemes except for weak
source-relay link where the NNC scheme is preferred.

II. CHANNEL MODEL

A. Discrete memoryless channel model
The relay channel with relay-destination (RD) cooperation

consists of three input alphabets X1, X2 and X3; two output
alphabets Y2 and Y3; and one conditional transition probability
p(y2, y3|x1, x2, x3) as shown in Figure 1

A (d2nRe, n) code for this channel consists of one mes-
sage set W1 = {1, . . . , d2nR1e}, three encoding functions
f1i, f2i, f3i, i = 1, . . . , n, and one decoding function g
defined as

f1i : W1 → X1, i = 1, . . . , n

f2i : Yi−1
2 → X2, i = 1, . . . , n

f3i : Yi−1
3 → X3, i = 1, . . . , n

g : Yn
3 → W1. (1)
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Fig. 1. Model of the relay channel with RD cooperation.

Definitions for the average error probability, achievable rate
and capacity region follow the standard ones in [7].

B. Gaussian Channel Model
The discrete-time standard model for the relay channel with

RD cooperation over Gaussian noises can be expressed as

Y2 = g12X1 + g32X3 + Z2,

Y3 = g13X1 + g23X2 + Z3, (2)

where gij for i ∈ {1, 2} and j ∈ {2, 3} are the link coefficients
from node i to j; Zl ∼ CN(0, 1), l ∈ {2, 3} are independent
complex AWGN.

III. CODING SCHEME

The coding scheme is based on block Markov superposition
encoding at the source, partial decode-forward relaying at the
relay, and quantize-forward relaying and backward decoding
at the destination. The source splits its message W1 into
two parts (W12,W13) sent at rates R12 and R13, respectively
(R1 = R12+R13). W13 is the private message part decoded at
the destination only whereas W12 is the public part decoded
at both the destination and the relay. In block i, the source
performs consecutive superposition encoding for W12,i−2,
W12,i−1, W12,i and W13,i and generates the codewords X2,
U, V and X1, respectively. The relay utilizes the received
signals from the source and the destination to decode W12,i

using joint decoding over two consecutive blocks. During the
transmission, the destination quantizes its received signal and
sends the quantization index in the next block through X3.
Then, it employs backward decoding to decode all transmitted
messages.

A. Achievable Rate
Theorem 1. For the relay channel with RD cooperation, the
achievable rate (R1) is given as

R1 ≤ max
pr

min{I1, I2, I3}, (3)

where

I1 = I(X1;Y3|X3, X2, V, U) + I(U ;Y2|X2, X3)

+ I(V ;Y2, Ŷ3|X3, X2, U),
I2 = I(X1;Y3|X3, X2, V, U) + I(V, U,X3;Y2|X2)

− I(Ŷ3;Y3|X3, U, V, X2, Y2),
I3 = I(X1, X2; Y3|X3), (4)

and the maximization is over pr = p(x2)p(u|x2), p(v|u, x2)
p(x1|u, v, x2)p(x3)p(ŷ3|y3x3) subject to

I(Ŷ3; Y3|X3, U, V,X2, Y2) ≤ I(X3;Y2|X2, U). (5)

Next, we explain the codebook generation, encoding and
decoding of coding scheme.

B. Codebook Generation

A sequence of B−2 messages is to be sent over the channel
in nB transmission. Therefore, no new information is sent in
the last two blocks (B−1 and B). This reduces the achievable
rates in (4) by a factor of 2/B; however, as B →∞, this factor
becomes negligible.

The codebook generation in block i is given as follows.
After fixing pr as in Theorem 1,
• Generate 2nR12 i.i.d sequences xn

2 (w12,i−2) ∼∏n
k=1 p(x2k).

• For each xn
2 (w12,i−2), generate 2nR12 i.i.d sequences

un(w12,i−1, w12,i−2) ∼
∏n

k=1 p(uk|x2k).
• For each pair xn

2 (w12,i−2) and un(w12,i−1, w12,i−2), gen-
erate 2nR12 i.i.d sequences vn(w12,i, w12,i−1, w12,i−2) ∼∏n

k=1 p(vk|uk, x2k).
• For each triplet xn

2 (w12,i−2), un(w12,i−1, w12,i−2)
and vn(w12,iw12,i−1, w12,i−2), generate 2nR13

i.i.d sequences xn
1 (w13,i, w12,iw12,i−1, w12,i−2) ∼∏n

k=1 p(x1k|vk, uk, x2k).
• Generate 2nR3 i.i.d sequences xn

3 (li−1) ∼
∏n

k=1 p(x3k).
• For each xn

3 (li−1), generate 2nR3 i.i.d sequences
ŷn
3 (li, li−1) ∼

∏n
k=1 p(ŷ3k, x3k).

1) Encoding: Let (w12, w13) be the new messages
to be sent in block i. R has an estimate (ŵ12,i−1)
of (w12,i−1) while D has li−1. Therefore, S sends
xn

1 (w13,i, w12,iw12,i−1, w12,i−2), R sends xn
2 (w12,i−2), and D

sends xn
3 (li−1).

2) Decoding:
At the relay: At the end of block i, R already knows li−1 =

Li−1, w12,i−2 = 1 and w12,i−1 = 1 from the decoding in
blocks i−1 and i. Then, R employs joint decoding over blocks
i and i + 1 to find a unique pair (ŵ12,i, l̂i) such that

(
xn

2 (1), un(1, 1), vn(ŵ12,i−1, 1, 1), xn
3 (Li−1),

ŷn
3 (l̂i|Li−1), yn

2 (i)
) ∈ An

ε

and
(
xn

2 (1), un(ŵ12,i−1, 1), xn
3 (l̂i), yn

3 (i + 1)
) ∈ An

ε (6)

Following standard joint typicality analysis [7], we obtain the
following rate constraints:

R3 ≤I(X3; Y2|X2, U) + I(Ŷ3;X2, V, U, Y2|X3),

R12 ≤I(U ; Y2|X2, X3) + I(V ; Ŷ3, Y2|X3, X2, U),

R12 + R3 ≤I(V, U,X3;Y2|X2) + I(Ŷ3; X2, V, U, Y2|X3)
(7)

At the destination: D employs two steps of decoding. First,
the D quantizes what it receives in each block, i.e. in block
i, the destination already knows li−1 = Li−1 and it finds an
index li such that

(ŷn
3 (li|Li−1), xn

3 (Li−1), yn
3 (i)) ∈ An

ε (8)

By the covering lemma, such li exists if

R3 > I(Ŷ3; Y3|X3) (9)



Then, at the end of the last transmission block, the destina-
tion employs backward decoding to decode all transmitted
messages. In block i, the destination knows w12,i = 1
and w12,i−1 = 1 from the decoding in block i + 2 and
i + 1, respectively. Hence, it declares that the message vector
(ŵ13,i, ŵ12,i−2) is sent if it is the unique vector such that(

xn
2 (ŵ12,i−2), un(1, ŵ12,i−2), vn(1, 1, ŵ12,i−2),

xn
1 (ŵ13,i, 1, 1, ŵ12,i−2), xn

3 (Li−1), yn
3 (i)

) ∈ An
ε (10)

The error analysis for this decoding rule leads to the following
rate constraints:

R13 ≤I(X1; Y3|X3, X2, U, V ),
R1 ≤I(X1, X2;Y3|X3) (11)

By combining (7), (9) and (11), we obtain Theorem 1.

C. Discussion
Remark 1. A second-order block Markov encoding is used
in this scheme where the transmitted codeword in block i
depends on the codewords transmitted in blocks i − 1 and
i−2. This encoding technique is important in that it allows the
relay to decode the public message using the received signals
from the source and the destination. As shown in (6), the relay
employs joint decoding over two consecutive blocks (i, i + 1)
to decode w12,i.
Remark 2. The scheme includes the following existing
schemes as special cases:
• The original PDF scheme for the relay channel proposed

in [2]. This can be verified by setting U = X3 = Ŷ3 = ∅
and R3 = 0

• The PDF scheme for relay channels with destination
feedback (DFB scheme) proposed in [5]. This can be
verified by setting U = ∅ and requiring the relay to
sequentially decode the compression index first and then
the public message instead of jointly decode both of them.

Remark 3. The noisy network coding scheme (NNC) proposed
in [6] can be applied to the channel model in Figure 1. By
applying Theorem 1 in [6] to the channel model in Figure 1,
the achievable rate can be expressed as

R1 ≤ maxmin{J1, J2}, where (12)

J1 = I(X1; Ŷ2, Ŷ3, Y3|X2, X3),

J2 = I(X1, X2; Ŷd, Yd|Xd)− I(Y2; Ŷ2|X1, X2, X3, Ŷ3, Y3)

and the maximization is over p(x1)p(x2)p(x3)
p(ŷ2|x2, y2)p(ŷ3|x3, y3). This achievable rate cannot be
directly compared with that in Theorem 1. However, we
compare them numerically for the Gaussian channel in
Section IV.
Remark 4. For the channel model in Section II, the simple
cut-set bound is given as follows.

Corollary 1. The capacity of the relay channel with RD
cooperation is upper bounded as

R1 ≤ I(X1; Y2, Y3|X2, X3),
R1 ≤ I(X1, X2; Y3|X3), (13)

for some joint distribution p(x1, x2, x3),

IV. GAUSSIAN CHANNEL

A. Signaling
The Gaussian model for the relay channel with RD coopera-

tion is given in (2). Since superposition encoding is equivalent
to addition in Gaussian channels [7], S, R and D construct
their transmit signals X1 and X2 in block i as follows.

X1 =
√

ρ13T1(w13,i) +
√

ρ12V (w12,i)
+
√

ρ11U(w12,i−1) +
√

ρ1S2(w12,i−2),

X2 =
√

P2T2(w12,i−2),

X3 =
√

P3T3(li−1),

Ŷ3 = Y3 + Ẑ3, (14)

where Ẑ3 ∼ CN (0, σ2) and T1, T2, T3, V and U are all i.i.d
random variables distributed according to ∼ CN (0, 1). The
power constraint at S is given as

ρ13 + ρ12 + ρ11 + ρ1 = P1. (15)

B. Achievable Rate
The achievable rate can be derived as follows.

Corollary 2. For the Gaussian relay channel with RD coop-
eration, the achievable rate (R1) under the proposed scheme
is given as in Theorem 1 with

I1 = C(g2
13ρ13) + C

(
g2
12ρ11

1 + g2
12(ρ13 + ρ12)

)

+ C
(

g2
13ρ12 + (1 + σ2)g2

12ρ12

(1 + σ2)(1 + g2
12ρ13) + g2

13ρ13

)

I2 = C(g2
13ρ13) + C(g2

12(ρ12 + ρ11) + g2
32P3

1 + g2
12ρ13

)

− C
(

1 + (g2
12 + g2

13)ρ13

σ2(1 + g2
12ρ13)

)

I3 = C(g2
13P1 + g2

23P2 + 2g13g23

√
ρ1P2). (16)

These constraints are subject to the condition in (5) which is
given in the Gaussian channel as

σ2 ≥ σ2
c where

σ2
c =

(
1 + g2

12(ρ13 + ρ12)
) (

1 + (g2
12 + g2

13)ρ13

)

(1 + g2
12ρ13)g2

32P3
, (17)

Proof: By direct application of Theorem 1 into the
Gaussian channel in (2) with signaling in Section IV-A.

C. Optimal σo

Since I1 is a decreasing function of σ while I2 is a an
increasing function, the achievable rate in Corollary 2 is
maximized with the optimal σo obtained form the intersection
between I1 and I2 in (16).

Corollary 3. The optimal σo that maximizes the achievable
rate in Corollary 2 is given as

σ2
o =

1 + (g2
10 + g2

12)(ρ13 + ρ12) + g2
12ρ11 (1 + µ)

g2
02P3

µ =
g2
10(ρ13 + ρ12)

1 + g2
12(ρ13 + ρ12)

(18)
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Fig. 2. Achievable rate versus g12 of the relay channel for the classical
PDF scheme [2], NNC scheme [6], DFB scheme [5], proposed RDC scheme
and the cut-set bound with g13 = g23 = 1 and P1 = P2 = 2 and different
values of P3.

Proof: (18) comes from the solution of I1 = I2 in (16).

Remark 5. From the expressions in (17) and (18), it can be
shown that σ2

o > σ2
c .

Figure 2 compares between the achievability of the proposed
RDC, DFB [5], classical PDF [2], NNC [6] schemes and the
cut-set bound. Results shows that the proposed RDC scheme
outperforms the classical PDF and the DFB schemes since
they are special cases of the proposed scheme as mentioned
in Remark 2. However, the difference between the proposed
RDC and the DFB schemes decreases as P3 and g12 increase.
Moreover, NNC is insensitive to P3 as it does not use the
feedback link.

Remark 6. The relay in the NNC scheme performs quantize-
forward relaying regardless of the strength of the signal it
receives from the destination. However, in the proposed RDC
and the DFB schemes, the relay uses the signal it receives
from the destination and performs PDF relaying. Therefore,
the relay can decode at a higher rate as P3 increases.

Furthermore, NNC is the best scheme at low g12 and then
becomes the worst at high g12. For each value of P3, there is
a threshold value of g12 at which the proposed RDC scheme
becomes better than NNC. Figure 3 illustrates this threshold
g12 value versus P3 and shows the regions where the proposed
RDC scheme or the NNC scheme is preferred.

V. CAPACITY ACHIEVING AT P3 →∞
In some applications such as the uplink in cellular networks,

the destination (base station) has much more power than the
mobiles such that the destination power is relatively infinite.
Moreover, Figure 2 shows that gap between the achievable rate
of the proposed scheme and the cut-set bound decreases as P3

increases. Hence, it is also of interest to study the asymptotic
achievable rate when P3 →∞. In this section, we show that
the proposed RDC scheme asymptotically achieves the cut-set
bound as P3 →∞.
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Fig. 3. Regions for the preferred coding scheme (the proposed RDC or
NNC) versus P3 and g12 where g13 = g23 = 1 and P1 = P2 = 2.

A. Achievability at P3 →∞
The achievable rate at P3 →∞ is given as follows.

Corollary 4. The achievable rate of the proposed RDC scheme
with P3 →∞ is given as in Corollary 2 with

I1 = C(g2
13ρ13) + C

(
g2
12ρ11

1 + g2
12(ρ13 + ρ12)

)

+ C
(

(g2
13 + g2

12)ρ12

1 + (g2
13 + g2

12)ρ13

)
,

I2 = I1,

I3 = C(g2
13P1 + g2

23P2 + 2g13g23

√
ρ1P2). (19)

Proof: By substituting P3 →∞ and hence σ2
o = σ2

c = 0
in Corollary 2.

B. Cut-Set Bound for Gaussian Channel

The cut-set bound for the Gaussian relay channel in (2) is
given as follows.

Corollary 5. The capacity of relay channel with RD cooper-
ation is upper bounded by R1 satisfying

R1 ≤ C
(

(g2
12 + g2

13)P1

(
1− δ2

12 + δ2
13 − 2δ12δ13δ23

1− δ2
23

))
,

R1 ≤ C(g2
13P1(1− δ2

13) + g2
23P2(1− δ2

23)

+ 2g13g23(δ12 − δ13δ23)
√

P1P2

)
, (20)

where (δ12, δ13, δ23) ∈ [−1,+1] and

1− δ2
12 − δ2

13 − δ2
23 + 2δ12δ13δ23 ≥ 0. (21)

Proof: The cut-set bound in (2) is maximized when the
input distribution (X1, X2, X3) is jointly Gaussian. δi,j for i
and j ∈ {1, 2, 3} is the correlation factor between Xi and Xj .
For the detailed proof, see Appendix A.

From this cut-set bound and the achievability in Corollary
4, we obtain the following theorem:

Theorem 2. The proposed scheme asymptotically achieves the
capacity of the Gaussian relay channel with RD cooperation
as P3 →∞.
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Fig. 4. Achievable rate versus g12 of the relay channel for the classical
PDF scheme, proposed RDC scheme at P3 →∞ and the cut-set bound with
g13 = g23 = 1 and P1 = P2 = 2.

Proof: After some mathematical manipulations, we can
show that formulas (19) with (15) and (20) with (21) are
identical. For the detailed proof, see Appendix B.

The equivalency between the cut-set bound and the achiev-
able rate with P3 → ∞ can be intuitively interpreted as
follows.
Remark 7. When P3 → ∞, the destination has an infinite
link to both relay and source. The destination virtually joins
the relay in one entity. Hence, the first constraint in the cut-set
bound in (13) is achieved. The second constraints in the cut-
set bound is obtained easily from the coherent transmission of
the source and the relay.

Figure 4 shows that the proposed RDC scheme is capacity
achieving at P3 →∞.

VI. CONCLUSION

In this paper, we showed how relay-destination coopera-
tion helps improve the achievable rate of the relay channel
until it asymptotically achieves the capacity of the Gaussian
relay channel. We proposed a coding scheme based on rate
splitting, second-order superposition block Markov encoding,
PDF, QF relaying and backward decoding techniques. The
proposed scheme includes as special cases the classical PDF
and destination feedback (DFB) schemes. Furthermore, we
applied the proposed scheme into the Gaussian channel and
numerically compare between the proposed RDC, the PDF,
DFB and NNC schemes. Finally, we proved that for Gaussian
channels, the proposed scheme asymptotically achieves the
capacity as the destination power approaches infinity. This
result shows the importance of relay destination cooperation
and encourages further studying of this cooperation in other
multiuser channels.

APPENDIX A
PROOF OF COROLLARY 5

For the Gaussian channel in (2), we aim to identify the
optimal joint density of (X1, X2, X3) that maximizes the rate
in Corollary 1. First, we start with I(X1; Y2, Y3|X3, X2)

I(X1;Y2, Y3|X3, X2)

= h(Y2, Y3|X3, X2)− h(Y2, Y3|X3, X2, X1)
= h(Y2, Y3|X3, X2)− h(Z2, Z3). (22)

The distribution of (Z2, Z3) is CN (0, I2×2). Therefore,
by the entropy power inequality [7], (22) is maxi-
mized when (Y2, Y3|X3, X2) is jointly Gaussian. From (2),
(Y2, Y3|X3, X2) is jointly Gaussian if (X1|X2, X3) is Gaus-
sian.

Next, we move to I(X1, X2;Y3|X3)

I(X1, X2; Y3|X3)
= h(Y3|X3)− h(Y3|X3, X2, X1)
= h(Y3|X3)− h(Z3)
= h(g13X1|X3 + g23X2|X3 + Z3)− h(Z3). (23)

Similar to I(X1; Y2, Y3|X3, X2), by the entropy power in-
equality, (23) is maximized when (g13X1|X3 + g23X2|X3)
is Gaussian because Z3 ∼ CN (0, 1).

Therefore, an optimal input distribution in Corollary 1 is
jointly Gaussian because if (X1, X2, X3) is jointly Gaussian,
(X1|X2, X3), (X1|X3), (X2|X3) and (X1|X3 + X2|X3) are
Gaussian. Hence, (X1, X2, X3) ∼ N (0,Σ) where Σ is the
covariance matrix given as

Σ = cov(X1, X2, X3)

=




P1 δ12

√
P1P2 δ13

√
P1P3

δ12

√
P1P2 P2 δ23

√
P2P3

δ13

√
P1P3 δ23

√
P2P3 P3


 (24)

where (δ12, δ13, δ23) ∈ [−1, +1] and det(Σ) ≥ 0 such that Σ
is positive semi-definite and a valid covariance matrix. This
implies the condition in (21).

APPENDIX B
PROOF OF THEOREM 2

For the signaling in Section IV-A, define the power allo-
cations of the source as ρk = µkP1 for k ∈ {1, 11, 12, 13}.
Then, the power constraint in (15) is equivalent to

µ13 + µ12 + µ11 + µ1 = 1. (25)

Then, after some mathematical manipulations, the achievable
rate with P3 →∞ in (19) can be expressed as

R1 ≤ C (
(g2

12 + g2
13)P1(1− β1)

)
,

R1 ≤ C
(
g2
13P1 + g2

23P2 + 2g13g23

√
µ1P1P2

)
. (26)

where

β1 =
ζ1

ζ2
, with (27)

ζ1 =
(

1− µ12 − g2
12µ11 + g2

13µ13

g2
12 + g2

13

)

+ ρ13

(
g2
12 + g2

13 − g2
13(µ13 + µ12)− g2

13g
2
12µ11

g2
12 + g2

13

)

+ g2
12(ρ12 + ρ13)

(
1 + (g2

12 + g2
13)ρ13 − η

)

ζ2 =
(
1 + g2

12(ρ12 + ρ13)
) (

1 + (g2
12 + g2

13)ρ13

)
,

η = µ12 + µ11 +
g2
13µ13

g2
12 + g2

13

+ g2
13ρ13(µ13 + µ12 + µ11)



Given the power constraint in (25), it can be easily verified
that 0 ≤ β1 ≤ 1 because 0 ≤ ζ1 ≤ ζ2.

Now, the cut-set bound in (20) can be expressed as

R1 ≤ C (
(g2

12 + g2
13)P1(1− β2)

)
,

R1 ≤ C(g2
13P1(1− δ2

13) + g2
23P2(1− δ2

23)

+ 2g13g23(δ12 − δ13δ23)
√

P1P2

)
, (28)

where

β2 =
δ2
12 + δ2

13 − 2δ12δ13δ23

1− δ2
23

(29)

With the condition in (21), it can be also shown that 0 ≤
β2 ≤ 1. Furthermore, setting δ13 = δ23 = 0 does not change
the range of β2 nor affect the cut-set bound as in (28). After
this setting, the conditions in (26) and (28) are identical.
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