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Abstract— We develop an optimization program to calculate the
ergodic capacity and the optimal input signal covariance of a Rician
correlated MIMO wireless channel. The program employs the New-
ton method and the barrier interior-point method to solve convex
stochastic formulations, using efficient gradient and Hessian caleu
lations. We then use the program to study impacts of the channel
mean, the transmit correlation, and the K factor on channel capacity
and the optimal input signal, revealing curious optimal signal char-
acteristics at high SNR, where mode-dropping can always occur fax
channel with strong mean or strong correlation. We also comparette
capacity with the mutual information obtained by the signaling solu-
tion optimal for the Jensen bound. Results reveal a close approxias
tion for systems with equal or fewer transmit than receive antenas
at all SNR, and for those with more transmit than receive antenna
at low SNR. The approximation diverges for the latter system at hig
SNR, depending on the transmit correlation and the channel mean,
or the Rician K factor.

1. INTRODUCTION

In a MIMO wireless system, having partial channel inforroatat
the transmitter can increase the system capacity signilfjcarne
capacity represents a fundamental limit on system trarssoms

rate, and there now exists practical coding schemes clagely

proaching this fundamental performance. Therefore, dping
the input signal to achieve the capacity, given the transhaibnel
side information, is of both theoretical and practical ietd. We

variance and the channel capacity. The program employseeffic
techniques for calculating the gradients and the Hessissisg
Monte-Carlo approximation; it has a runtime linear in themu
ber of channel samples and quadratic-to-cubic in the nuraber
transmit antennas.

We then use the program to study impacts of the channel mean,
the transmit correlation, and th€ factor on the capacity and the
optimal input signal. We also compare the optimal input Sofu
to a sub-optimal one, based on Jensen’s bound on the mutual in
formation, and establish conditions with which the subiropt
solution is capacity-tight, hence allowing a simple appration
without performing the optimization.

The rest of this paper is organized as follows: In Sectiowd,
introduce the channel model and formulate the capacityropa-
tion problem. Section Il outlines the implemented convexi-o
mization methods. We analyze the program run-time comylexi
and provide optimization examples in Section IV. In sectibwe
apply the program to analyze impacts of various channehpara
ters on the capacity and the optimal input signal, and tosasbe
sub-optimal solutions. We close with some concluding réar
Section VI.

2. CHANNEL MODEL AND PROBLEM FORMULATION

We focus on frequency flat MIMO wireless channels with Rician

study a channel with the side information in the form of a nonfading and transmit antenna correlation. Lt and N be the
zero channel mean and the transmit antenna correlationseThenumber of receive and transmit antennas, respectively.ciibge-

channel statistics cover physical Rician correlated chinithey
also model a channel estimate and the estimation errorieoeay.

The capacity optimization problem for a Rician correlatkdre

nel involves evaluating an expectation over the non-cewtishart

nel matrixH of size M x N, complex Gaussian distributed with
meanH,,, and transmit covariand®,, can then be represented as

H = H,+H,R}, (1)

distribution. Although the optimal input signal is zero-ameGaussiafyhere H,, has i.i.d zero-mean unit-variance Gaussian elements.

distributed [1], a closed-form analytical solution forévariance
given such channel statistics is still an open problem. idao-

The transmitter is assumed to know only the channel digtdbu
which includes the meaH,,,, an arbitrary complex matrix, and

lutions exist for special cases: when the channel mean @s(2er he covarianc®,, a Hermitian positive semi-definite (PSD) ma-

correlated Rayleigh channel) [2, 3], or when the antennasiar
correlated (an uncorrelated Rician channel) [4, 5]. In¢hesses,

trix. The receiver, on the other hand, is assumed to havegerf
channel knowledge at every time instance. This model also ap

the eigenvectors of the input covariance maitrix are knowar an pjies to a partial transmit channel knowledge form, in whicé

Iytically, but not the eigenvalues. In terms of signal pEsiag,
these two quantities respectively function as the beanifayrmi-
rections (patterns) and the power allocation on these beams
Fortunately, the capacity optimization formulation incdlses
is convex, hence allowing efficient numerical techniqudsetan-

transmitter has a channel estimate with a known error canee
[7].

The channel ergodic capacity, under an average sum transmit
power constraint, is achieved by Gaussian inputs with zexarm
and a covariance matri& that is the optimizer of the following

plemented [6]. In this paper, we develop a convex optimireti proplem:

program using an interior point method. This program inplés
channel statistical parameters — the mean and the tranemg-c
lation — and the SNR; it outputs the capacity-optimal sigral

ming [ = —FEnllogdet(I+yHQH")]
st. tMQ)=1, Q=0,

()



where~y is the SNR, tf.) is the trace of a matrix, ang denotes
PSD. This problem is convex, hence solving for the unkn&@vn

The largest computational cost is in calculati¥igdue to the ma-
trix inversion. Then the gradient of the objective funct{@hwith

can be performed numerically up to a desired precision. eSincrespect to\ is a/N x 1 row-vector with elements given by [8]

Q is a Hermitian complex matrix of siz& x N, it containsN?2
real scalar variables (includiny real entries on the diagonal and
%N(N — 1) complex entries in the upper triangle, which con-
tribute two real variables each). Thus, the optimizatiorialde
size isN2.

=T
There are special cases in which the eigenvectors of the opi/Nerey;

opP
O\

(Vg); = —E[tr(P—1 )] = —E[y7s)] = —E[Z],

i=1...N (5)

is rows of Y, s; is columni of S, andZ;; is thei*" diag-

mal Q are known analytically. These are a zero-mean correlate@n@l €lement of. The Hessian can also be computed efficiently

channel H,, = 0 andR; is arbitrary) and a non-zero mean uncor-
related channelH,, is arbitrary andR; = I). Let the eigenvalue
decomposition of be Q = UAU”*. The optimal eigenvectors
U in each case are then given by the eigenvectoR;dR, 3] and

of H! H,, [4, 5], respectively. These cases only require finding

the optimal eigenvalueA (i.e. the input power distribution) via
numerical optimization, reducing the number of unknownsvto
real variables. The optimization problem (2) then becomes

min g = —Fgllogdet(I + SA)] 3)
st. t(A)=1, A0,

whereS = yU*H*HU, which has a known distribution.

3. THE OPTIMIZATION METHOD

We solve both problems (2) and (3) using the Newton method. |
problem (2), when the positive semidefinite constr&nt= 0 is
active (i.e., some eigenvalues of the optifiabre zero), we im-
plement a barrier interior-point method, using the Newtaihod
for the inner iterations [6]. Such a barrier implementati®mot
necessary for problem (3). In both problems, the optimzati
is complicated by the stochastic nature of the objectivetion,
making it difficult to compute the exact function value, tha-g

as aN x N matrix with elements given by

oP oP .
(Vi) = E[tr(P_la/\iP_la—)\jN = E[y.?Siy?Sj}
= E[ZjZy) , ij=1...N. (6)

The expectation operator is approximated by taking the &amp
mean, using a set of sample channels. An independent sample
channel set is generated for each Newton step.

3.2. Solving for the covarianceQ in problem (2)

Similarly, problem (2) is solved using the Newton methodwHo
ever, due to the matrix form of the unknown varial)ethe PSD
constraintQ = 0 needs handling in a different way. Specifically,
a barrier interior-point method is implemented if this cioamt
is active, meaning the optim@) has at least one zero eigenvalue.
ithis condition is heuristically established when the alilewton
step without involving the PSD constraint produces a nositpe
semidefiniteQ. Otherwise, the program proceeds ignoring this
PSD constraint. By using a good starting point (such as theeke
solution, see Section 5.1), this heuristic check leadsd@ftimal
solution, while reducing the optimization time.

We now establish the formula for computing the gradient and
the Hessian in each Newton step. Siligés a Hermitian matrix,

dient, and the Hessian needed at each optimization stepseThegorm a vector of unknown variables from the real and imaginar

values are also approximated using sets of discretizednethan
samples; as the number of transmit antenNagrows, the num-

ber of samples needs to be increased. The gap between the cug — Fiss

rent function value and the optimal value, or the functiop-t=
optimal value, used in the stopping criterion is also apimaxed
by Monte-Carlo simulations. Therefore, the numerical @iea
(the tolerance) is dictated by the variance of the samplenmea

3.1. Solving for the eigenvalues\ in problem (3)

First consider the simpler optimization problem (3) withreal
variables. Denote = diag(A), a real column-vector consisting
of the N unknown eigenvalues. The problem in termsholbe-
comes an optimization with equality constraitA = 1. The

parts ofQ as

gNN

-~ 49R21 qR32 -

T
9 --qRrRN1 9121 49132 - - - QINl} ,

(7
whereQr = Re(Q), Q; = Im(Q), and the lower-case letters
refer to the entries in the corresponding matrix. The faétdrs
introduced for uniformity in the gradient and the Hessiarithw
respect toq) formula. The length ofy is N2. ComputeG =
vH*H and
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R=I+GQ, W=R! X=WG. (8)

Again, the most intensive step is to compMé, involving ma-
trix inversion. OnceX is computed, the gradient and the Hessian

Newton method can be implemented very efficiently. The confollow directly. Noting thatX is Hermitian, the gradient of the
dition A >= 0 is handled as follows: when ever a Newton stepobjective function in (2) has elements calculated as

produces a negativi; value, this eigenvalue is set to zero, and
the optimization continues with the other variables, rgssted
for the unit sum. This step is equivalent to dropping a mode in
water-filling process.

The Newton method requires calculating the gradient and the

Hessian. To do so, compute the following matrices:

P=I+SA, Y=P'! Z=YS. (4)

of _, OR
— = —E[tr(R
qrij [ ( aQRij)]
= —E[W) g +W,g;| =—-2E[Re(X);;] (9)
of _, OR
= —Eltr(R
(9QIij [r( aq”j)]
= —jE[w,gi — W, g;| = —2E[Im(X);]



wherew! is rowi of W, g; is columni of G, andR](.) and 100

T{(.) represent the real and imaginary parts. The Hessian has 4| z 22??:,?:,?; |
elements calculated as
O 2F [Re(X1; Xk + Xk X)) i
O0qRrijOqREl btk kel S
782f 2F [Re(X; X Xk Xa)] (10) g
= € i Xik — j X =
0q1i;01k1 li<tik kil g
O*f £
—— = 2F[Im(X;; X + X Xy =
Oqri; 01k Zm(Xi; 5] %
f 2F [Im(—X1; X + Xk Xit)] f;z)
_vJ  _ m(—X;: X; X)) .
aQIijaQRk;z ik Rl
Again sample means are used to approximate the expectezbyalu

an independent sample set is generated for each Newton step.

When the PSD constraint dQ is tight, equivalently the opti- Number of samples (x 10%)
mal input signal drops modes, we use the barrier method [&] an 30 ‘ ‘
iteratively solve the following problem —o— Special cases
—— Gen. no barrier
min —FEg[logdet(I+ GQ)] —logdet(Q)/t (11) 251 Ni fit A
st. Q) =1. N fit
20

The second term in the objective functidog det(Q)/t, is to en-
sure thaf) stays PSD. This term is deterministic and independent
of the channel, thus its gradient and Hessian, establisheihdy

to (9) and (10) respectively, can be calculated exactly Viiitle
overhead. The Newton method is used in the inner iterations t
solve the above problem. Then at each outer iteration, the ba
rier valuet is increased by multiplying with:, an optimization
parameter, until the desired tolerance is satisfied. Theédpam-
plementation, therefore, takes longer to execute duedalthible

|00p_ 0 . . . . . . .
2 3 4 5 6 7 8 9 10
Number of Tx antennas N

=
)]

=
o

Average time per iteration (sec)

1

4. OPTIMIZATION COMPLEXITY AND EXAMPLES
Fig. 1. Runtime complexity versus the number of channel samples

4.1. Complexity assessment (above) and the number of transmit antennas (below).
The optimization programs were written using Matlab. Fegr
shows the computational complexity in terms of programirnat 5. APPLICATIONS IN CAPACITY ANALYSIS

per Newton iteration versus the number of channel samptak, a

versus the number of transmit antenés The runtime scales 5.1. The Jensen solution

linearly with the number of channel samples, but at differates . ) i ) )

for each problem (2) and (3). For the number of transmit araen Of interest s a fast way to approximate the capacity and fite o

N in the range of interest\ < 10), the runtime for problem (3) M&! input covariance. Consider optimizing Jensen’s ujoemd
scales asv?, faster than the order ¥ predicted by theory [6]. on_the_ mutu_al information, for which a closed-form analatlso-_
For problem (2) without the barrier implementation, thetimne Iuno_n is available. The Jensen bound on the average murtiaoat i
scales by an order df3, not N¢ as theoretically predicted. mation is

4.2. Numerical examples Bllog det(I+ HQH)] < logdet(I + BH'HIQ) .
Perform the eigenvalue decompositiBfH*H] = U,;DU,"; the
covarianceQ; that maximizes the Jensen bound has the eigen-
vectors given byU, and the eigenvalues obtained by the standard
water-filling onD as

Figure 2 presents an example of the optimization processy-sh
ing the mutual information value and its gap to the optiméliga
versus the number of iterations. The optimization pararaete
given in the Appendix. We choose the starting point of the op
timization as the Jensen covariance solution (see Sectibn 5 1
resulting in a fast convergence. The fluctuation in the fionct Ai = (u - dz) , 1=1...N, (12)

. . . . .. Ya;/ +
value and its gap-to-optimal value over different iteratios due
to Monte Carlo simulation (the use of sample mean to approxiwhered; are the diagonal elementsbf, andy is chosen to satisfy
mate the expectation). Thus, the function error floor isadésd by Zf.vzl A; = 1. Using the Jensen covarian€g; as the input co-
the number of channel samples, but not the number of iteérstio variance results in a mutual information value, termedJ#msen
as the case in deterministic function optimization. mutual information, smaller than the channel capacity.
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Fig. 2. An optimization example of & x 2 channel at SNR = Fig. 3. Capacity and mutual information oflax 4 system (above)

10dB andK = 0.1, using 20000 independently generated Chanand the Corresponding power allocations (be|ow)
nel samples in each iteration. Above: mutual informatioluea

(nats/Hz); below: its gap to optimal.
trix) will result in a bigger gap. The main reason for the gap a
) ) ) high SNR is the difference in the power allocation. In cositta
5.2. Channel capacity and the Jensen mutual information the equi-power allocation of the Jensen solution at high SNR

Figure 3 shows an example of the channel capacity and therdens-aPacity-optimal input converges to a non-equi-powertimior

mutual information with the associated eigenvalueQdbr a sys- Fh|s channel. Th_ese convergence value_s_are still unknowt_ytan
tem with equal numbers of transmit and receive antenhas4. ically. Asymptotic analyses on the conditions for modepgiiog

The channel has a hon-zero mean and a transmit correlaiiem, g (resulting in at least one zero-power mode) at high SNR can be

in the Appendix. The mutual information with equal power al-fOund in [7].

location is also included for comparison. The results shioat t

the Je_nsen mutual informat?on closely approximates thelwl_a 5.3. Effects of thek factor

capacity at all SNR. Any minor penalty due to the Jensen input

covariance occurs only at mid-range SNR. At high SNR, the cafhe channel Riciad factor affects the capacity and the gap be-

pacity optimal power allocation approaches equi-poweaess tween the capacity and the Jensen mutual information. E&igur

the Jensen solution. Similar observations apply to systeiths 5 shows the capacity versug at two different SNR values for

equal or fewer transmit than receive antennas in general. 4 x 2 channels with the mean and covariance given in the Appen-
For systems with more transmit than receive antenna, the cordix. Notice that at a low SNR (e.g. -2dB), the channel capacit

parison can be different. Figure 4 illustrates the resolitafl x 2 is a hon-monotonous function of th€ factor, and a minimum

channel with the mean and the transmit correlation matgoesy  exists. This effect is partly due to the transmit correlatimpact

in the Appendix. The Jensen mutual information also cloaply on the capacity: at lowk, the correlation impact becomes more

proximates the channel capacity at low SNR. However, at highdominant, and it is well-known that correlation helps irage the

SNR, the Jensen mutual information exhibits a gap to the caapacity at low SNR. At a higher SNR (e.g. 12 dB), the corre-

pacity. This gap occurs depending on the channel mean and ttaion impact diminishes for channels with a full-rank edation

transmit correlation — a more correlated channel (measbyed matrix; provided that the channel mean is also full-ranle, ¢h-

for example, a higher condition number of the correlation mapacity monotonically increases with tt#€ factor.
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Fig. 4. Capacity and mutual information ofiax 2 system (above) Fig. 5. Channel capacity and mutual information versus the K
and the corresponding power allocations (below). factor at SNR = -2dB (above) and SNR = 12dB (below).

A higher K factor also causes the SNR point, at which the.rate atlow SNR but diverges at high SNR. This gap at high SNR

: ; . . is due to the difference in power allocation and depends en th
Jensen mutual information starts diverging from the chhoae transmit correlation and the channel mean. orAhtactor
pacity, to increase, implying that the Jensen mutual in&irom ' '
closely approximates the capacity for a larger range of SNgR.
ure 6 presents thi& factor threshold versus the SNR for these REFERENCES
4 x 2 channels. Wheli is above this threshold, the Jensen mu-
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APPENDIX

All channels used in the simulations are normalized for astaot average power gain df N (the product of the number of receive and
transmit antennas, respectively) as

tr(E[H'H]) =H; H,, + MR; = MN .
For the channel model (1), tH€ factor is defined as

3
Mtr(Rf) ’

wherel|.|| r is the Frobenius norm. Except for the results in Figures S6anith a varyingK factor, all other simulations us€ = 0.1.
The non-normalized transmit correlation matrix is

(13)

0.8758 —0.0993 — 0.0877: —0.6648 — 0.0087% 0.5256 — 0.4355¢
R, — —0.0993 + 0.0877: 0.9318 0.0926 + 0.3776¢  —0.5061 — 0.3478: (14)
7| —0.6648 4 0.0087i 0.0926 — 0.3776¢ 1.0544 —0.6219 + 0.5966:

0.5256 + 0.4355¢ —0.5061 4 0.3478: —0.6219 — 0.59661¢ 1.1379

This matrix has the eigenvalués717, 0.997, 0.237, 0.049] and a condition number &5.5, representing a strong correlation.
The non-normalized mean for thex 2 channel is

| 0.0749 — 0.1438: 0.0208 + 0.3040¢ —0.3356 4 0.04897 0.2573 — 0.0792¢

Hy, = 0.0173 — 0.2796: —0.2336 — 0.25864 0.3157 +0.4079: 0.1183 + 0.1158: (15)
The non-normalized mean for thex 4 channel is
0.2976 + 0.11774 0.1423 + 0.4518; —0.0190 4+ 0.16507 —0.0029 + 0.0634:
H — —0.1688 — 0.00127 —0.0609 — 0.12673 0.2156 — 0.5733: 0.2214 + 0.29427 (16)

0.0018 — 0.0670¢ 0.1164 + 0.0251¢ 0.5599 + 0.24001¢ 0.0136 — 0.0666¢
—0.1898 + 0.3095¢ 0.1620 — 0.1958¢ 0.1272 4 0.05317 —0.2684 — 0.0323¢

The parameters used in the optimization programs are

Maximum number of iterations MAXITER %0
Maximum number of line searches each step MAXLINES 50=
Barrier method update factor 7 =100
Initial barrier multiplying factor bart =100
Tolerance Axl V2 f(z)Azn < €) € =10"°

Number of channel samples in Monte-Carlo simulations NSAMP = 20000



