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Abstract– We develop an optimization program to calculate the
ergodic capacity and the optimal input signal covariance of a Rician
correlated MIMO wireless channel. The program employs the New-
ton method and the barrier interior-point method to solve convex
stochastic formulations, using efficient gradient and Hessian calcu-
lations. We then use the program to study impacts of the channel
mean, the transmit correlation, and theK factor on channel capacity
and the optimal input signal, revealing curious optimal signal char-
acteristics at high SNR, where mode-dropping can always occur fora
channel with strong mean or strong correlation. We also compare the
capacity with the mutual information obtained by the signaling solu-
tion optimal for the Jensen bound. Results reveal a close approxima-
tion for systems with equal or fewer transmit than receive antennas
at all SNR, and for those with more transmit than receive antennas
at low SNR. The approximation diverges for the latter system at high
SNR, depending on the transmit correlation and the channel mean,
or the Rician K factor.

1. INTRODUCTION

In a MIMO wireless system, having partial channel information at
the transmitter can increase the system capacity significantly. The
capacity represents a fundamental limit on system transmission
rate, and there now exists practical coding schemes closelyap-
proaching this fundamental performance. Therefore, optimizing
the input signal to achieve the capacity, given the transmitchannel
side information, is of both theoretical and practical interest. We
study a channel with the side information in the form of a non-
zero channel mean and the transmit antenna correlation. These
channel statistics cover physical Rician correlated channels; they
also model a channel estimate and the estimation error covariance.

The capacity optimization problem for a Rician correlated chan-
nel involves evaluating an expectation over the non-central Wishart
distribution. Although the optimal input signal is zero-mean Gaussian
distributed [1], a closed-form analytical solution for itscovariance
given such channel statistics is still an open problem. Partial so-
lutions exist for special cases: when the channel mean is zero (a
correlated Rayleigh channel) [2, 3], or when the antennas are un-
correlated (an uncorrelated Rician channel) [4, 5]. In these cases,
the eigenvectors of the input covariance matrix are known ana-
lytically, but not the eigenvalues. In terms of signal processing,
these two quantities respectively function as the beamforming di-
rections (patterns) and the power allocation on these beams.

Fortunately, the capacity optimization formulation in allcases
is convex, hence allowing efficient numerical techniques tobe im-
plemented [6]. In this paper, we develop a convex optimization
program using an interior point method. This program inputsthe
channel statistical parameters – the mean and the transmit corre-
lation – and the SNR; it outputs the capacity-optimal signalco-

variance and the channel capacity. The program employs efficient
techniques for calculating the gradients and the Hessians,using
Monte-Carlo approximation; it has a runtime linear in the num-
ber of channel samples and quadratic-to-cubic in the numberof
transmit antennas.

We then use the program to study impacts of the channel mean,
the transmit correlation, and theK factor on the capacity and the
optimal input signal. We also compare the optimal input solution
to a sub-optimal one, based on Jensen’s bound on the mutual in-
formation, and establish conditions with which the sub-optimal
solution is capacity-tight, hence allowing a simple approximation
without performing the optimization.

The rest of this paper is organized as follows: In Section II,we
introduce the channel model and formulate the capacity optimiza-
tion problem. Section III outlines the implemented convex opti-
mization methods. We analyze the program run-time complexity
and provide optimization examples in Section IV. In sectionV, we
apply the program to analyze impacts of various channel parame-
ters on the capacity and the optimal input signal, and to assess the
sub-optimal solutions. We close with some concluding remarks in
Section VI.

2. CHANNEL MODEL AND PROBLEM FORMULATION

We focus on frequency flat MIMO wireless channels with Rician
fading and transmit antenna correlation. LetM and N be the
number of receive and transmit antennas, respectively. Thechan-
nel matrixH of sizeM × N , complex Gaussian distributed with
meanHm and transmit covarianceRt, can then be represented as

H = Hm + HwR
1

2

t , (1)

whereHw has i.i.d zero-mean unit-variance Gaussian elements.
The transmitter is assumed to know only the channel distribution,
which includes the meanHm, an arbitrary complex matrix, and
the covarianceRt, a Hermitian positive semi-definite (PSD) ma-
trix. The receiver, on the other hand, is assumed to have perfect
channel knowledge at every time instance. This model also ap-
plies to a partial transmit channel knowledge form, in whichthe
transmitter has a channel estimate with a known error covariance
[7].

The channel ergodic capacity, under an average sum transmit
power constraint, is achieved by Gaussian inputs with zero mean
and a covariance matrixQ that is the optimizer of the following
problem:

minQ f = −EH[log det(I + γHQH∗)] (2)

s.t. tr(Q) = 1 , Q < 0 ,



whereγ is the SNR, tr(.) is the trace of a matrix, and< denotes
PSD. This problem is convex, hence solving for the unknownQ

can be performed numerically up to a desired precision. Since
Q is a Hermitian complex matrix of sizeN × N , it containsN2

real scalar variables (includingN real entries on the diagonal and
1

2
N(N − 1) complex entries in the upper triangle, which con-

tribute two real variables each). Thus, the optimization variable
size isN2.

There are special cases in which the eigenvectors of the opti-
mal Q are known analytically. These are a zero-mean correlated
channel (Hm = 0 andRt is arbitrary) and a non-zero mean uncor-
related channel (Hm is arbitrary andRt = I). Let the eigenvalue
decomposition ofQ beQ = UΛU∗. The optimal eigenvectors
U in each case are then given by the eigenvectors ofRt [2, 3] and
of H∗

mHm [4, 5], respectively. These cases only require finding
the optimal eigenvaluesΛ (i.e. the input power distribution) via
numerical optimization, reducing the number of unknowns toN
real variables. The optimization problem (2) then becomes

min g = −ES[log det(I + SΛ)] (3)

s.t. tr(Λ) = 1 , Λ < 0 ,

whereS = γU∗H∗HU, which has a known distribution.

3. THE OPTIMIZATION METHOD

We solve both problems (2) and (3) using the Newton method. In
problem (2), when the positive semidefinite constraintQ < 0 is
active (i.e., some eigenvalues of the optimalQ are zero), we im-
plement a barrier interior-point method, using the Newton method
for the inner iterations [6]. Such a barrier implementationis not
necessary for problem (3). In both problems, the optimization
is complicated by the stochastic nature of the objective function,
making it difficult to compute the exact function value, the gra-
dient, and the Hessian needed at each optimization step. These
values are also approximated using sets of discretized channel
samples; as the number of transmit antennasN grows, the num-
ber of samples needs to be increased. The gap between the cur-
rent function value and the optimal value, or the function gap-to-
optimal value, used in the stopping criterion is also approximated
by Monte-Carlo simulations. Therefore, the numerical precision
(the tolerance) is dictated by the variance of the sample means.

3.1. Solving for the eigenvaluesΛ in problem (3)

First consider the simpler optimization problem (3) withN real
variables. Denoteλ = diag(Λ), a real column-vector consisting
of the N unknown eigenvalues. The problem in terms ofλ be-
comes an optimization with equality constraint1T λ = 1. The
Newton method can be implemented very efficiently. The con-
dition λ < 0 is handled as follows: when ever a Newton step
produces a negativeλi value, this eigenvalue is set to zero, and
the optimization continues with the other variables, re-adjusted
for the unit sum. This step is equivalent to dropping a mode ina
water-filling process.

The Newton method requires calculating the gradient and the
Hessian. To do so, compute the following matrices:

P = I + SΛ , Y = P−1 , Z = YS . (4)

The largest computational cost is in calculatingY due to the ma-
trix inversion. Then the gradient of the objective function(3) with
respect toλ is aN × 1 row-vector with elements given by [8]

(∇g)i = −E
[

tr
(

P−1 ∂P

∂λi

)

]

= −E
[

ỹT
i si

]

= −E[Zii] ,

i = 1 . . . N (5)

whereỹT
i is rowi of Y, si is columni of S, andZii is theith diag-

onal element ofZ. The Hessian can also be computed efficiently
as aN × N matrix with elements given by

(∇2g)ij = E
[

tr
(

P−1 ∂P

∂λi

P−1 ∂P

∂λj

)

]

= E
[

ỹT
j siỹ

T
i sj

]

= E[ZjiZij ] , i, j = 1 . . . N . (6)

The expectation operator is approximated by taking the sample
mean, using a set of sample channels. An independent sample
channel set is generated for each Newton step.

3.2. Solving for the covarianceQ in problem (2)

Similarly, problem (2) is solved using the Newton method. How-
ever, due to the matrix form of the unknown variableQ, the PSD
constraintQ < 0 needs handling in a different way. Specifically,
a barrier interior-point method is implemented if this constraint
is active, meaning the optimalQ has at least one zero eigenvalue.
This condition is heuristically established when the initial Newton
step without involving the PSD constraint produces a non-positive
semidefiniteQ. Otherwise, the program proceeds ignoring this
PSD constraint. By using a good starting point (such as the Jensen
solution, see Section 5.1), this heuristic check leads to the optimal
solution, while reducing the optimization time.

We now establish the formula for computing the gradient and
the Hessian in each Newton step. SinceQ is a Hermitian matrix,
form a vector of unknown variables from the real and imaginary
parts ofQ as

q =
[q11

2
. . .

qNN

2
qR21 qR32 . . . qRN1 qI21 qI32 . . . qIN1

]T

,

(7)
whereQR = Re(Q), QI = Im(Q), and the lower-case letters
refer to the entries in the corresponding matrix. The factor1

2
is

introduced for uniformity in the gradient and the Hessian (with
respect toq) formula. The length ofq is N2. ComputeG =
γH∗H and

R = I + GQ , W = R−1 , X = WG . (8)

Again, the most intensive step is to computeW, involving ma-
trix inversion. OnceX is computed, the gradient and the Hessian
follow directly. Noting thatX is Hermitian, the gradient of the
objective function in (2) has elements calculated as

∂f

∂qRij

= −E
[

tr
(

R−1 ∂R

∂qRij

)

]

= −E
[

w̃T
j gi + w̃T

i gj

]

= −2E
[

Re(X)ij

]

(9)

∂f

∂qIij

= −E
[

tr
(

R−1 ∂R

∂qIij

)

]

= −jE
[

w̃T
j gi − w̃T

i gj

]

= −2E
[

Im(X)ij

]



wherew̃T
i is row i of W, gi is columni of G, andRe(.) and

Im(.) represent the real and imaginary parts. The Hessian has
elements calculated as

∂2f

∂qRij∂qRkl

= 2E [Re(XljXik + XkjXil)]

∂2f

∂qIij∂qIkl

= 2E [Re(XljXik − XkjXil)] (10)

∂2f

∂qRij∂qIkl

= 2E [Im(XljXik + XkjXil)]

∂2f

∂qIij∂qRkl

= 2E [Im(−XljXik + XkjXil)] .

Again sample means are used to approximate the expected values;
an independent sample set is generated for each Newton step.

When the PSD constraint onQ is tight, equivalently the opti-
mal input signal drops modes, we use the barrier method [6] and
iteratively solve the following problem

min −EG[log det(I + GQ)] − log det(Q)/t (11)

s.t. tr(Q) = 1 .

The second term in the objective function,log det(Q)/t, is to en-
sure thatQ stays PSD. This term is deterministic and independent
of the channel, thus its gradient and Hessian, established similarly
to (9) and (10) respectively, can be calculated exactly withlittle
overhead. The Newton method is used in the inner iterations to
solve the above problem. Then at each outer iteration, the bar-
rier valuet is increased by multiplying withµ, an optimization
parameter, until the desired tolerance is satisfied. The barrier im-
plementation, therefore, takes longer to execute due to this double
loop.

4. OPTIMIZATION COMPLEXITY AND EXAMPLES

4.1. Complexity assessment

The optimization programs were written using Matlab. Figure 1
shows the computational complexity in terms of program runtime
per Newton iteration versus the number of channel samples, and
versus the number of transmit antennasN . The runtime scales
linearly with the number of channel samples, but at different rates
for each problem (2) and (3). For the number of transmit antennas
N in the range of interest (N ≤ 10), the runtime for problem (3)
scales asN2, faster than the order ofN3 predicted by theory [6].
For problem (2) without the barrier implementation, the runtime
scales by an order ofN3, notN6 as theoretically predicted.

4.2. Numerical examples

Figure 2 presents an example of the optimization process, show-
ing the mutual information value and its gap to the optimal value
versus the number of iterations. The optimization parameters are
given in the Appendix. We choose the starting point of the op-
timization as the Jensen covariance solution (see Section 5.1),
resulting in a fast convergence. The fluctuation in the function
value and its gap-to-optimal value over different iterations is due
to Monte Carlo simulation (the use of sample mean to approxi-
mate the expectation). Thus, the function error floor is dictated by
the number of channel samples, but not the number of iterations
as the case in deterministic function optimization.
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Fig. 1. Runtime complexity versus the number of channel samples
(above) and the number of transmit antennas (below).

5. APPLICATIONS IN CAPACITY ANALYSIS

5.1. The Jensen solution

Of interest is a fast way to approximate the capacity and the opti-
mal input covariance. Consider optimizing Jensen’s upper-bound
on the mutual information, for which a closed-form analytical so-
lution is available. The Jensen bound on the average mutual infor-
mation is

E[log det(I + HQH∗)] ≤ log det(I + E[H∗H]Q) .

Perform the eigenvalue decompositionE[H∗H] = UsDUs
∗; the

covarianceQJ that maximizes the Jensen bound has the eigen-
vectors given byUs, and the eigenvalues obtained by the standard
water-filling onD as

λi =
(

µ −
1

γdi

)

+

, i = 1 . . . N , (12)

wheredi are the diagonal elements ofD, andµ is chosen to satisfy
∑N

i=1
λi = 1. Using the Jensen covarianceQJ as the input co-

variance results in a mutual information value, termed theJensen
mutual information, smaller than the channel capacity.
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Fig. 2. An optimization example of a4 × 2 channel at SNR =
10dB andK = 0.1, using 20000 independently generated chan-
nel samples in each iteration. Above: mutual information value
(nats/Hz); below: its gap to optimal.

5.2. Channel capacity and the Jensen mutual information

Figure 3 shows an example of the channel capacity and the Jensen
mutual information with the associated eigenvalues ofQ for a sys-
tem with equal numbers of transmit and receive antennas,4 × 4.
The channel has a non-zero mean and a transmit correlation, given
in the Appendix. The mutual information with equal power al-
location is also included for comparison. The results show that
the Jensen mutual information closely approximates the channel
capacity at all SNR. Any minor penalty due to the Jensen input
covariance occurs only at mid-range SNR. At high SNR, the ca-
pacity optimal power allocation approaches equi-power, asdoes
the Jensen solution. Similar observations apply to systemswith
equal or fewer transmit than receive antennas in general.

For systems with more transmit than receive antenna, the com-
parison can be different. Figure 4 illustrates the results for a4× 2
channel with the mean and the transmit correlation matricesgiven
in the Appendix. The Jensen mutual information also closelyap-
proximates the channel capacity at low SNR. However, at high
SNR, the Jensen mutual information exhibits a gap to the ca-
pacity. This gap occurs depending on the channel mean and the
transmit correlation – a more correlated channel (measuredby,
for example, a higher condition number of the correlation ma-
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Fig. 3. Capacity and mutual information of a4×4 system (above)
and the corresponding power allocations (below).

trix) will result in a bigger gap. The main reason for the gap at
high SNR is the difference in the power allocation. In contrast to
the equi-power allocation of the Jensen solution at high SNR, the
capacity-optimal input converges to a non-equi-power solution for
this channel. These convergence values are still unknown analyt-
ically. Asymptotic analyses on the conditions for mode-dropping
(resulting in at least one zero-power mode) at high SNR can be
found in [7].

5.3. Effects of theK factor

The channel RicianK factor affects the capacity and the gap be-
tween the capacity and the Jensen mutual information. Figure
5 shows the capacity versusK at two different SNR values for
4× 2 channels with the mean and covariance given in the Appen-
dix. Notice that at a low SNR (e.g. -2dB), the channel capacity
is a non-monotonous function of theK factor, and a minimum
exists. This effect is partly due to the transmit correlation impact
on the capacity: at lowK, the correlation impact becomes more
dominant, and it is well-known that correlation helps increase the
capacity at low SNR. At a higher SNR (e.g. 12 dB), the corre-
lation impact diminishes for channels with a full-rank correlation
matrix; provided that the channel mean is also full-rank, the ca-
pacity monotonically increases with theK factor.



−5 0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

20

SNR in dB

M
ut

ua
l i

nf
or

m
at

io
n 

(b
ps

/H
z)

Ergodic capacity
MI w/Jensen cov
MI w/equal power

−5 0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR in dB

T
ra

ns
m

it 
co

va
ria

nc
e 

ei
ge

nv
al

ue
s

Optimum power
Jensen power
Equal power

Fig. 4. Capacity and mutual information of a4×2 system (above)
and the corresponding power allocations (below).

A higher K factor also causes the SNR point, at which the
Jensen mutual information starts diverging from the channel ca-
pacity, to increase, implying that the Jensen mutual information
closely approximates the capacity for a larger range of SNR.Fig-
ure 6 presents thisK factor threshold versus the SNR for these
4 × 2 channels. WhenK is above this threshold, the Jensen mu-
tual information can be used to accurately approximate the capac-
ity; the difference is less than 0.03 bps/Hz, which is withinthe
numerical precision for optimizing the capacity.

6. CONCLUDING REMARKS

We have implemented convex optimization routines to maximize
the mutual information of MIMO wireless channels with a non-
zero mean and transmit antenna correlation, using the Newton
method and the barrier interior-point method. The gradient, the
Hessian, and the objective function values are evaluated using
Monte-Carlo simulations. The computational cost grows linearly
with the number of channel samples, and quadratically-to-cubically
with the number of transmit antennas. Comparisons with the Jensen
bound optimizer are performed, illustrating that the Jensen mutual
information often approximates the capacity well for systems with
equal or fewer transmit than receive antennas. For systems with
more transmit than receive antennas, the approximation is accu-
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Fig. 5. Channel capacity and mutual information versus the K
factor at SNR = -2dB (above) and SNR = 12dB (below).

rate at low SNR but diverges at high SNR. This gap at high SNR
is due to the difference in power allocation and depends on the
transmit correlation and the channel mean, or theK factor.
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APPENDIX

All channels used in the simulations are normalized for a constant average power gain ofMN (the product of the number of receive and
transmit antennas, respectively) as

tr(E[H∗H]) = H∗

mHm + MRt = MN .

For the channel model (1), theK factor is defined as

K =
||Hm||2F
M tr(Rt)

, (13)

where||.||F is the Frobenius norm. Except for the results in Figures 5 and6 with a varyingK factor, all other simulations useK = 0.1.
The non-normalized transmit correlation matrix is

Rt =









0.8758 −0.0993 − 0.0877i −0.6648 − 0.0087i 0.5256 − 0.4355i
−0.0993 + 0.0877i 0.9318 0.0926 + 0.3776i −0.5061 − 0.3478i
−0.6648 + 0.0087i 0.0926 − 0.3776i 1.0544 −0.6219 + 0.5966i

0.5256 + 0.4355i −0.5061 + 0.3478i −0.6219 − 0.5966i 1.1379









(14)

This matrix has the eigenvalues[2.717 , 0.997 , 0.237 , 0.049] and a condition number of55.5, representing a strong correlation.
The non-normalized mean for the4 × 2 channel is

Hm =

[

0.0749 − 0.1438i 0.0208 + 0.3040i −0.3356 + 0.0489i 0.2573 − 0.0792i
0.0173 − 0.2796i −0.2336 − 0.2586i 0.3157 + 0.4079i 0.1183 + 0.1158i

]

(15)

The non-normalized mean for the4 × 4 channel is

Hm =









0.2976 + 0.1177i 0.1423 + 0.4518i −0.0190 + 0.1650i −0.0029 + 0.0634i
−0.1688 − 0.0012i −0.0609 − 0.1267i 0.2156 − 0.5733i 0.2214 + 0.2942i

0.0018 − 0.0670i 0.1164 + 0.0251i 0.5599 + 0.2400i 0.0136 − 0.0666i
−0.1898 + 0.3095i 0.1620 − 0.1958i 0.1272 + 0.0531i −0.2684 − 0.0323i









(16)

The parameters used in the optimization programs are
Maximum number of iterations MAXITER =10
Maximum number of line searches each step MAXLINES =50
Barrier method update factor µ = 100
Initial barrier multiplying factor barrt = 100
Tolerance (∆xT

nt∇
2f(x)∆xnt ≤ ε) ε = 10−5

Number of channel samples in Monte-Carlo simulations NSAMPLE = 20000


