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T
he benefits of using multiple antennas at both the
transmitter and the receiver in a wireless system are
well established. Multiple-input multiple-output
(MIMO) systems enable a growth in transmission
rate linear in the minimum number of antennas at

either end [1], [2]. MIMO techniques also enhance link reliabili-
ty and improve coverage [3]. MIMO is now entering next genera-
tion cellular and wireless LAN products with the promise of
widespread adoption in the near future.

While the benefits of MIMO are realizable when the receiver
alone knows the communication channel, these are further
enhanced when the transmitter also knows the channel. The
value of transmit channel knowledge can be significant. For
example, in a four-transmit two-receive antenna system with
independent identically distributed (i.i.d.) Rayleigh flat-fading,
transmit channel knowledge can more than double the capacity at
−5dB signal-to-noise ratio (SNR) and add 1.5 b/s/Hz additional
capacity at 5 dB SNR. Such SNR ranges are common in practical
systems such as WiFi and WiMax applications. In a non-i.i.d.
channel (such as correlated Rician fading), channel knowledge at
the transmitter offers even greater leverage in performance.
Therefore, exploiting transmit channel side information is of
great practical interest in MIMO wireless. In this article, we
assume full channel knowledge at the receiver and study how
channel-side information at the transmitter (CSIT) can be used to
improve link performance. While the origins of using CSIT at the
transmitter or precoding dates back to Shannon [4], MIMO pre-
coding has been an active research area during the last decade,
fueled by applications in commercial wireless technology.

Precoding is a processing technique that exploits CSIT by
operating on the signal before transmission. For many common
forms of partial CSIT, a linear precoder is optimal from an infor-
mation theoretic view point [4]–[6]. A linear precoder essentially
functions as a multimode beamformer, optimally matching the
input signal on one side to the channel on the other side. It does
so by splitting the transmit signal into orthogonal spatial eigen-
beams and assigns higher power along the beams where the
channel is strong but lower or no power along the weak.
Precoding design varies depending on the types of CSIT and the
performance criterion.

TYPES OF CSIT
The random time-varying wireless medium makes it difficult
and often expensive to obtain CSIT. In closed-loop methods, the
limited feedback resources, associated feedback delays, and
scheduling lags degrade CSIT for mobile users with small chan-
nel coherence time. In open-loop methods, antenna calibration
errors and turn-around time lags again limit CSIT accuracy.
Therefore, we often only have imperfect instantaneous channel
state information. We may, however, decide to exploit only cer-
tain parameters of the channel such as the Rician K factor or
channel condition number to reduce the amount of information
to be tracked instantaneously. In some cases such as fast fading
channels or systems with long delay, we may give up tracking
real-time information and provide CSIT in terms of the channel

statistics, such as the channel mean and covariance or antenna
correlations. Statistical CSIT is obtained from channel observa-
tions over multiple channel coherence times. In this article, we
use CSIT to mean channel side information at the transmitter,
which includes not only instantaneous channel state informa-
tion, but also the channel parameters and statistics.

To understand different types of CSIT in wireless, it is neces-
sary to know how the CSIT is obtained. There are two principles
for obtaining CSIT: reciprocity and feedback. Reciprocity
involves using the reverse channel information (open-loop),
while feedback requires sending the forward channel informa-
tion back to the transmitter (closed-loop). These techniques are
discussed in detail in the following sections. In both cases, there
exists a delay, such as a scheduling or a feedback delay, between
when the channel information is obtained and when it is used
by the transmitter. The information accuracy will depend on
this delay and on the channel estimation technique. Channel
estimation either at the receiver or transmitter is the starting
point for deriving CSIT, and its accuracy will depend on the esti-
mation technique and SNR. Since for most applications, chan-
nel estimation is also required for receiver processing, it is
usually sufficiently accurate for precoding purposes. Depending
on the type of information and how fast the channel changes
with time, however, the delay in CSIT acquisition can signifi-
cantly affect the CSIT accuracy.

Error-free instantaneous channel state information or per-
fect CSIT, therefore, is usually difficult to obtain in wireless;
more often, only incomplete or partial channel information is
available to the transmitter. Instantaneous CSIT can be charac-
terized by a channel estimate and an associated error covariance
[7], [8]. Both quantities are dependent on the delay in acquiring
CSIT. As this delay increases, the CSIT approaches the channel
statistics [8]. Thus, both instantaneous and statistical CSIT can
be expressed in the same form: a channel estimate or mean, and
an error or channel covariance.

APPROACHES TO PRECODING DESIGN
Although the term precoding is sometimes used in the litera-
ture to represent any transmit processing besides channel cod-
ing, we clarify its use here to strictly mean the transmit signal
processing that involves CSIT. MIMO techniques without CSIT
are clarified as space-time (ST) coding. Since the work of
Shannon [4], more recent results show that, for a flat-fading
wireless channel, provided a mild condition that the current
channel state is independent of the previous CSIT when given
the current CSIT, the capacity can be achieved by CSIT-inde-
pendent coding together with CSIT-dependent linear precoding
[5], [6]. The linear precoder directs signal spatially and allocate
power in a water-filling fashion over both space and time. Power
allocation over time can slightly increase the capacity of a fading
channel at low SNRs, but has diminishing impact as the SNR
increases beyond roughly 15 dB [9]. Depending on the antenna
configuration, allocation over space, on the other hand, can sig-
nificantly increase the capacity at all SNRs. This motivates
precoding designs to exploit spatial CSIT.
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In designing the precoder, various performance criteria have
been used. To achieve the ergodic capacity, the precoder shapes
the covariance matrix of the optimal transmit signal to match
the CSIT [7], [10]–[17]. Precoders can also be designed accord-
ing to more practical measures, such as the mean-square error
(MSE), an error probability [pair-wise error probability (PEP),
symbol error rate (SER), bit error rate (BER)], or the received
SNR [7], [18]–[31]. These different precoder designs can be
analyzed using the common linear precoding structure.

SCOPE
This article provides a tutorial of linear precoding for a frequency-
flat, single-user MIMO wireless system, examining both theoreti-
cal foundations and practical issues. The article first discusses
principles for CSIT acquisition and develops a dynamic CSIT
model, which spans perfectly to statistical CSIT, taking into
account channel temporal variation. It then presents the capacity
benefits of CSIT and information theoretic arguments for exploit-
ing the CSIT by linear precoding. A precoded system structure is
then described, involving an encoder and a linear precoder.
Criteria for designing the precoder are then discussed, followed by
specific designs for different CSIT scenarios. These designs are
analyzed in terms of the linear precoding structure, and their per-
formance is illustrated by numerical examples. A brief survey of
application follows, involving practical channel acquisition tech-
niques and precoding deployment in current wireless standards.
Finally, the article concludes with a discussion of other partial
CSIT types and the continuing role of precoding. The aim is to
build intuition and insight into this important field of MIMO lin-
ear precoding while leaving the details to references.

CSIT ACQUISITION AND MODELING

CSIT ACQUISITION TECHNIQUES
In a communication system, since the signal enters the channel
after leaving the transmitter, the transmitter can only acquire
channel information indirectly. The receiver, however, can esti-
mate the channel directly from the channel-modified received
signal. Pilots are usually inserted in the transmitted signal to
facilitate channel estimation by the receiver. Fortunately, mod-
ern communication systems are usually full-duplex with a trans-
ceiver at each end. The transmitter thus can acquire CSIT based
on the channel estimates at a receiver, by either invoking reci-
procity or using feedback.

OPEN-LOOP CHANNEL ACQUISITION
The reciprocity principle in wireless communication states that
the channel from an antenna A to another antenna B is identical
to the transpose of the channel from antenna B to antenna A,
provided the two channels are measured at the same time, the
same frequency, and the same location. This principle suggests
that the transmitter can obtain information of the forward (A to
B) channel from the reverse (B to A) channel measurements,
which the receiver at A can measure. This information can
involve the instantaneous channel or other channel parameters,

including the channel statistics. In real full-duplex communica-
tions, however, the forward and reverse links cannot use all
identical frequency, time, and spatial instances. The reciprocity
principle may still hold approximately if the difference in any of
these dimensions is relatively small, compared to the channel
variation across the referenced dimension.

Consider a base node for example. The node measures the
reverse channel during reception and uses this measurement for
the CSIT of the next transmission. In voice applications, the for-
ward and reverse links to all the users operate in back-to-back
time slots. Therefore, reverse channel measurements can be made
regularly using embedded pilots. These measurements periodical-
ly refresh the CSIT. In data communications, the forward and
reverse links may not operate back-to-back; hence, specially
scheduled reverse-link transmissions for channel measurements
known as channel sounding are used. A subset of the users, for
whom CSIT is required, is scheduled to send a sounding signal.
The sounding signals are orthogonal among simultaneously
scheduled users, using orthogonal subcarriers as in orthogonal
frequency division modulation (OFDM) or orthogonal codes as in
code division multiple access (CDMA). Channel sounding is effi-
cient for systems with many antennas at the base node.

One complication in using reciprocity methods is that the prin-
ciple only applies to the radio channel between the antennas, while
in practice, the channel is measured and used at the baseband
processor. Different transmit and receive RF hardware chains
therefore become part of the forward and reverse channels. Since
these chains have different frequency transfer characteristics, reci-
procity requires transmit-receive chain calibration to equalize the
two chains (see [32] for example). Calibration is expensive and has
made open-loop methods less attractive in practice.

CLOSED-LOOP CHANNEL ACQUISITION
Another method of obtaining CSIT is using feedback from the
receiver of the forward link. The channel information is meas-
ured at the receiver at B during the forward link (A to B) trans-
mission, then sent to the transmitter at A on the reverse link. In
practice, the forward-link transmission from a base node
includes pilot signals, received by all active users. These users
can thus measure their respective receive channels. The
required users then send their channel information on a reverse
link back to the base node for use as their CSIT. The feedback
communication can either be scheduled separately or piggy-
backed on on-going transmissions. In data communications,
CSIT may be needed for only a subset of users, who are then
scheduled to transmit their channel information.

Feedback is not limited by the reciprocity requirements.
However, it imposes additional system overhead by using up
transmission resources. Techniques to reduce the amount of
feedback have been a subject of intense study, for example,
designing vector codebooks, quantizing channel information, or
selecting only the important information. See the conclusion
for further discussion on this topic.

Furthermore, feedback information is susceptible to channel
variation due to the delay in the feedback loop. The usefulness of
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feedback depends on this delay and the channel Doppler spread.
For a fast time-varying channel in mobile communications, feed-
back techniques are usually effective up to a certain mobile
speed, depending on the carrier frequency, the transmission
frame length, and the turn-around time. The effects of feedback
delay and error have been analyzed for various precoding tech-
niques in 3GPP [33], revealing potentially severe performance
degradation. Therefore, the optimal use of feedback must
account for the information quality.

APPLICATION AND OVERHEADS 
IN MIMO CSIT ACQUISITION
Both reciprocity and feedback methods are used in practical wire-
less systems, including time-division-duplex (TDD) and
frequency-division-duplex (FDD). TDD systems may use reciproc-
ity techniques. While the forward and reverse links in a TDD sys-
tem often have identical frequency bands and antennas, there is a
time lag between these two links. In voice systems, this lag is the
ping-pong period; in asynchronous data systems, the lag is the
scheduling delay between the reception of the signal from a user
and the next transmission to that user. Such time lags must be
negligible compared to the channel coherence time for reciproci-
ty techniques to be applicable. FDD systems, on the other hand,
usually have identical temporal and spatial dimensions on the for-
ward and reverse links, but the link frequency offset (normally at
5% of the carrier frequency) is often much larger than the chan-
nel coherence bandwidth, making reciprocity techniques infeasi-
ble. FDD systems therefore commonly use feedback techniques.

An important practical issue is the pilot related overhead when
using multiple antennas. While there is no penalty for multiple
receive antennas, with the exception of transmit beam forming,
multiple transmit antennas require additional pilot overhead pro-
portional to the number of transmit antennas, if the receiver
needs to learn the complete MIMO channel. In the case of trans-
mit beam forming, this overhead can be avoided if the pilots are
also beam-formed along with the signal (data associated pilots). In
an open-loop system, the overhead is the product of the number
of training pilots on the reverse link and the number of users par-
ticipating in reverse channel sounding. In a closed-loop system,
the overhead consists of both the training pilots and the feedback.
The training overhead is independent of the number of users. The
feedback overhead is proportional to the number of designated
users on the reverse link multiplied with the size of their feedback
information. For OFDM systems, the amount of feedback is fur-
ther increased due to the multiple subcarriers. Exploiting fre-
quency continuity by tone sampling can help reduce this
overhead, making it sublinear in the number of OFDM subcarri-
ers. The overhead comparison in open- vs. closed-loop systems
typically favors open-loop. However, when the number of receive
antennas on the forward link is much larger than the number of
transmit antennas, closed-loop systems may be more efficient.

THE MIMO CHANNEL AND CSIT MODELING
A wireless channel exhibits time, frequency, and space selective
variations, known as fading. This fading arises due to Doppler, delay,

and angle spreads in the scattering environment [3], [34]. The
channel spreading can be observed by sending a single impulse in
frequency or time (CW signal) or angle (point source) through the
channel and receiving a signal spread along the spectral, temporal,
or spatial dimension, respectively. In this article, we focus on a
time-selective channel, assuming frequency-flat and negligible
angle-spread. A frequency-flat solution, however, can be applied to a
frequency-selective channel by decomposing the transmission band
into multiple narrow, frequency-flat subbands. Specifically, we can
apply the solution per subcarrier in systems employing OFDM.

In a rich scattering environment, a frequency-flat MIMO
wireless channel can be modeled as a complex Gaussian random
process, represented as a time-varying matrix. The channel at a
time instance is a Gaussian random variable, specified by the
mean and its covariance. A nonzero channel mean signifies the
presence of a direct line-of-sight or a cluster of strong paths, and
the channel envelop has the Rician statistics, while zero mean
corresponds to the Rayleigh statistics. The channel covariance,
on the other hand, captures the correlation among the antennas
at both the transmitter and the receiver. Assuming the channel is
stationary, the channel temporal variation can be captured by the
channel auto-covariance, measuring the correlation between two
channel instances separated by a delay. At zero delay, the channel
auto-covariance coincides with the channel covariance.

This article considers CSIT at the transmit time in the form of
a channel estimate and the estimation error covariance, derived
from a channel measurement at an initial time and the channel
statistics [8]. Since the main source of irreducible error in chan-
nel estimation is the random time-variation of the channel
between the initial measurement and its use by the transmitter,
we assume that the initial channel measurement is error-free. The
error in the channel estimate therefore depends only on the time
delay and the channel time selectivity, or the Doppler spread.

Let H(M × N) denote the channel matrix in a system with N
transmit and M receive antennas. The channel has mean H̄ and
covariance R0, defined as

H̄ = E [H]

R0 = E [hh∗] − h̄h̄∗, (1)

where the lower-case letter denotes the vectorized version of the
upper-case matrix variable, and (.)∗ denotes conjugate trans-
pose. Assume that we have an initial, accurate channel measure-
ment H0. The channel auto-covariance Rs at time delay s then
indicates the correlation between this initial measurement H0

and the current channel Hs, defined as

Rs = E [hsh∗
0] − h̄h̄∗. (2)

Intuitively, when this correlation is strong (Rs is large when
measured in a suitable norm) then H0 is useful for estimating
Hs. The strongest correlation is when the delay is 0; that is, if
s → 0, then Rs → R0. In a scalar system, Rs and R0 reduce to
scalars rs and r0, respectively. They are related as rs = ρ(s)r0,
where |ρ(s)| ≤ 1 is the temporal correlation coefficient.



We now make an important assumption about channel tempo-
ral homogeneity. We assume that the temporal correlation coeffi-
cient ρ(s) between any pair of transmit and receive antennas is
identical. This assumption is based on the premise that the chan-
nel temporal statistics can be expected to be the same for all anten-
na pairs. It is now possible to separate the temporal correlation
from the spatial correlation in the channel auto-covariance as

Rs = ρ(s)R0. (3)

The temporal correlation ρ is a function of the time delay s and
the channel Doppler spread. In Jake’s model for example,
ρ(s) = J0(2π s f d), where fd is the channel Doppler spread and
J0(.) is the zeroth-order Bessel function of the first kind [35].

An estimate of the channel at time s together with the esti-
mation error covariance then follow from the minimum mean
squared error (MMSE) estimation theory [36] as

Ĥ = ρH0 + (1 − ρ)H̄

Re = (1 − ρ2)R0. (4)

The two quantities Ĥ and Re function effectively as a new chan-
nel mean and a new channel covariance, and thus are referred to

as the effective mean and the effective covariance, respectively.
Together, they constitute the CSIT. This CSIT ranges from per-
fect channel knowledge when ρ = 1 to pure statistics when
ρ = 0. Since the CSIT depends on ρ which captures the channel
time-variation, it is called dynamic CSIT. Here, ρ functions as a
measure of CSIT quality. When ρ = 1, the channel estimate
coincides with H0 and is error-free. As ρ decreases to 0, the
influence of the initial channel measurement diminishes, and
the estimate moves toward the channel mean H̄. In parallel, the
estimation error covariance Re is zero when ρ = 1, and grows
to R0 as ρ decreases to 0. Figure 1 illustrates this CSIT evolu-
tion as a function of the time delay s.

Several special cases of dynamic CSIT are of interest. First is
perfect CSIT, in which the effective covariance is zero, and the
effective mean is the instantaneous channel. Second is mean
CSIT, in which the effective mean is nonzero and arbitrary, but
the effective covariance is the identity matrix, corresponding to
uncorrelated antennas. Third is covariance CSIT, in which the
effective covariance matrix is nonidentity and arbitrary, but the
effective mean is zero, corresponding to Rayleigh fading. The
general case in which both the mean and covariance matrices
are arbitrary is referred to as statistical CSIT (at a given ρ).

BENEFITS AND OPTIMAL USE OF CSIT
In a frequency-flat MIMO channel, CSIT can be exploited
in both the spatial and temporal dimensions, in contrast
to the scalar case, in which only temporal CSIT is rele-
vant. It is well known that temporal CSIT—channel
information across multiple time instances—provides lit-
tle capacity gain, which becomes negligible at medium-
to-high SNRs (approximately above 15 dB) [9]. Spatial
CSIT, on the other hand, can offer a significant increase
in channel capacity at all SNRs.

Figure 2 provides an example of the capacity increase
based on spatial CSIT for two 4 × 2 Rayleigh fading (zero-
mean) channels. For the i.i.d channel, capacities with per-
fect CSIT and without are plotted. For the correlated
channel with a rank-one transmit covariance matrix (and
uncorrelated receive antennas), capacities with the covari-
ance knowledge and without are shown. The capacity gain
from CSIT at high SNRs here is significant, reaching
almost 2 b/s/Hz at 15 dB SNR. At lower SNRs, although the
absolute gain is not as high, the relative gain is much more
pronounced. For both channels, CSIT helps to double the
capacity at −5 dB SNR. Subsequently, exploiting spatial
CSIT, particularly in the form of an effective channel mean
and covariance (4), will be the focus of this article.

BENEFITS OF CSIT
The capacity gain from CSIT is different at low and high
SNRs [8]. At low SNR, CSIT can help increase the ergodic
capacity multiplicatively. The transmitter relies on the
CSIT to focus transmit power only on strong channel
modes, whereas without CSIT, the optimal strategy for
ergodic capacity is to transmit with equal power in every
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[FIG1] Dynamic CSIT model.
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[FIG2] Capacity of 4 × 2 Rayleigh fading channels without and with
perfect CSIT.
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direction. For example, with perfect CSIT at low SNRs, only the
strongest eigen-mode of the channel is used. The low-SNR
capacity ratio r between perfect CSIT and no CSIT is given by

r = Cperfect CSIT

Cno CSIT
= NE [λmax(HH∗)]

tr(E [HH∗])
, (5)

where N is the number of transmit antennas and tr(.) is the
trace of a matrix. For an i.i.d. Rayleigh fading channel, as the
number of antennas increases to infinity, provided the transmit
to receive antenna ratio N/M stays constant, this ratio
approaches a fixed value as

r →
(

1 +
√

N
M

)2

. (6)

The ratio r is always larger than one and can be significant in sys-
tems with more transmit than receive antennas (N > M ).
Examples of the capacity ratio versus the SNR for several systems
with twice the number of transmit as receive antennas are given
in Figure 3. This ratio increases at lower SNRs and at larger
numbers of antennas. For these systems, it asymptotically
approaches 5.83.

With statistical CSIT, similarly, the CSIT helps to increase
the low-SNR capacity multiplicatively. The capacity ratio
between statistical CSIT and no CSIT is given by

r = Cstatistical CSIT

Cno CSIT
= Nλmax(G)

tr(G)
, (7)

where G = E [H∗ H]. Again, the statistical CSIT helps the trans-
mitter to focus its energy along the dominant eigen-mode of G
at low SNRs.

At high SNRs, the capacity gain from CSIT is incremental
and dependent on the relative antenna configuration. For sys-
tems with equal or fewer transmit than receive antennas, the
capacity gain from perfect CSIT diminishes at high SNRs, since
the optimal input signal with CSIT then also approaches
equipower. For systems with more transmit than receive anten-
nas (N > M), however, CSIT helps increase the capacity even at
high SNRs. Since the channel rank here is smaller than the
number of transmit antennas, CSIT helps the transmitter direct
the signal to avoid the channel null-space and achieve an incre-
mental capacity gain at high SNRs as

�C = M log
(

N
M

)
. (8)

This gain is proportional to the number of receive antennas M
and depends on the ratio of the number of transmit to receive
antennas N/M. For example, for systems with twice the number
of transmit as receive antennas, the capacity incremental gain
approaches the number of receive antennas in bits per second
per hertz and can be achieved at an SNR as low as 20 dB, as
illustrated in Figure 4.

OPTIMAL USE OF CSIT
The optimal use of CSIT for achieving the capacity of a
frequency-flat fading channel can be established by first
examining the scalar channel [5]. Assume that the transmit-
ter has causal channel state information Us

1 = {U1, . . . Us},
provided that the channel is independent of the past CSIT
given current CSIT

Pr
(
hs|U s

1
) = Pr(hs|Us). (9)

The channel capacity is then a stationary function of the current
CSIT, but not dependent on the entire CSIT history. This condi-
tion covers the dynamic CSIT model (4). The receiver knows the
channel perfectly, it also knows how the CSIT is used at the
transmitter. Such assumptions are practically reasonable since
the receiver can obtain channel information more readily than

[FIG3] Capacity ratio gain from perfect CSIT for i.i.d. channels.
Asymptotically as the number of antennas increases, the ratio
approaches 5.83.
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the transmitter, and they can both agree on a precoding algo-
rithm. The capacity of the channel with CSIT (now denoted by
U) can then be achieved by a single Gaussian codebook designed
for a channel without CSIT, provided that the code symbols are
dynamically scaled by a power-allocation function determined
by the CSIT

C = max
f

E
[

1
2

log(1 + hf(U ))

]
, (10)

where the expectation is taken over the joint distribution of h
and U. In other words, the combination of this power-allocation
function f(U ) and the channel creates an effective channel, out-
side of which coding can be applied as if the transmitter had no
CSIT. This insight, in fact, can be traced back to Shannon in [4].
For a scalar fading channel, therefore, the optimal use of CSIT is
for temporal power allocation.

This result has been subsequently extended to the MIMO fad-
ing channel [6]. Under similar assumptions, the capacity-optimal
input signal with CSIT can be decomposed as the product of a
codeword optimal for a channel without CSIT and a weighting
matrix dependent on the CSIT. The optimal use of CSIT is now
linear precoding, which allocates power in both spatial and tem-
poral dimensions. In other words, the capacity-optimal signal is
zero-mean Gaussian distributed with the covariance determined
by means of the precoding matrix. This optimal configuration is
shown in Figure 5.

These results establish important properties of capacity-
optimal signaling for a fading channel with CSIT. First, it is
optimal to separate the function that exploits CSIT and the

channel code, which is designed for a channel without CSIT.
Second, a linear precoder is optimal for exploiting the CSIT.
These separation and linearity properties are the guiding prin-
ciples for MIMO frequency-flat precoder designs. In particular,
this article focuses on designing a precoder based on the CSIT,
given predetermined channel coding and detection technique.
Before discussing about specific designs, however, the structure
of a system with precoding is analyzed next.

PRECODING SYSTEM STRUCTURE
The transmitter in a system with precoding consists of an
encoder and a precoder, as depicted in Figure 5. The encoder
intakes data bits and performs necessary coding for error correc-
tion by adding redundancy, then maps the coded bits into vector
symbols. The precoder processes these symbols before transmis-
sion from the antennas. At the other side, the receiver decodes
the noise-corrupted received signal to recover the data bits,
treating the combination of the precoder and the channel as an
effective channel. The structures of these processing blocks are
discussed in detail next.

ENCODING STRUCTURE
An encoder contains a channel coding and interleaving block and
a symbol-mapping block, delivering vector symbols to the pre-
coder. We classify two broad structures for the encoder: spatial
multiplexing and ST coding, based on the symbol mapping block.
The spatial multiplexing structure de-multiplexes the output bits
of the channel coding and interleaving block to generate inde-
pendent bit streams. These bit streams are then mapped into vec-

tor symbols and fed directly into the
precoder, as shown in Figure 6. Since
the streams are independent with
individual SNR, per-stream rate adap-
tation can be used.

In ST coding structure, on the
other hand, the output bits of the
channel coding and interleaving block
are first mapped directly into symbols.
These symbols are then processed by a
ST encoder (such as in [38], [39]), pro-
ducing vector symbols as input to the
precoder, shown in Figure 7. If the ST
code is capacity lossless for a channel
with no CSIT (for example, the
Alamouti code for a 2 × 1 channel
[38]), then this structure is also capac-
ity optimal for the channel with CSIT.
The ST coding structure contains a

single data stream; hence, only a single rate adap-
tation is necessary. The rate is controlled by the
FEC-code rate and the constellation design.

The difference between these two encoding
structures therefore lies in the temporal dimen-
sion of the symbol-level code. Spatial multiplexing
spreads symbols over the spatial dimension alone,

[FIG5] An optimal configuration for exploiting CSIT.
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resulting in a one-symbol-long input block, while ST coding usual-
ly spreads symbols over both the spatial and the temporal dimen-
sions. While these two structures have different implications on
rate adaptation, this issue is not discussed in this article.
Therefore, for precoding analysis and design, we will treat spatial
multiplexing as a special case of ST coding with the block length of
one. Assuming a Gaussian-distributed codeword C of size N × T
with a zero mean, we define the codeword covariance matrix as

Q = 1
TP

E
[
CC ∗] , (11)

where P is the transmit power (here we assume that the code-
word has been scaled by the transmit power, so this definition
provides the normalized covariance), and the expectation is
taken over the codeword distribution. When C is spatial multi-
plexing, Q = I.

Of particular interest is ST block code (STBC), usually
designed to capture the spatial diversity in the channel, assum-
ing no CSIT. Diversity determines the slope of the error proba-
bility versus the SNR and is related to the number of spatial
links that are not fully correlated [42]. High diversity is useful
in a fading link since it reduces the fade margin, which is
needed to meet required link reliability. A STBC can be charac-
terized by its diversity order; a full-diversity code achieves the
maximum diversity MN in a channel with N transmit and M
receive antennas. There is, however, a fundamental trade-off
between the diversity and the multiplexing orders in ST coding
[43]. The multiplexing order relates to rate-adaptation; it is the
scale at which the transmission rate asymptotically increases
with the SNR. A fixed-rate system therefore has a zero multi-
plexing order. (Recently there has been new development of the
diversity-multiplexing trade-off at finite [low] SNRs with a mod-
ified definition of multiplexing order [46].) Without CSIT, STBC
design achieving the optimal diversity-multiplexing trade-off is
an active research area (see [44], [45] for some examples).
With CSIT, on the other hand, precoding focuses on extracting
a coding gain (an SNR advantage) from the CSIT; hence it is
independent of, and complementary to, the diversity-multi-
plexing trade-offs for ST codes.

LINEAR PRECODING STRUCTURE
The precoder is a separate transmit processing block from chan-
nel and ST coding. It depends on the CSIT, but a linear precoder
has a general structure. A linear precoder functions as a combi-
nation of an input shaper and a multimode beamformer with
per-beam power allocation. Consider the singular value decom-
position (SVD) of the precoder matrix 

F = UFDVF. (12)

The orthogonal beam directions are the left singular vectors UF,
of which each column represents a beam direction (pattern).
Note that UF is also the eigenvectors of the product FF ∗, thus
the structure is often referred to as eigen-beamforming. The
beam power loadings are the squared singular values D2. The

right singular vectors VF mix the precoder input symbols to feed
into each beam and hence is referred to as the input shaping
matrix. This structure is illustrated in Figure 8. To conserve the
total transmit power, the precoder must satisfy

tr(FF ∗) = 1. (13)

In other words, the sum of power over all beams must be a con-
stant. The individual beam power, however, can differ according
to the SNR, the CSIT, and the design criterion.

Essentially, a precoder has two effects: decoupling the input
signal into orthogonal spatial modes, in the form of eigen-
beams, and allocating power over these beams, based on the
CSIT. If the precoded, orthogonal spatial-beams match the chan-
nel eigen-directions (the eigenvectors of H∗ H ), there will be no
interference among signals sent on different modes, thus creat-
ing parallel channels and allowing transmission of independent
signal streams. This effect, however, requires the full channel
knowledge at the transmitter. With partial CSIT, the precoder
tries to approximately match its eigen-beams to the channel
eigen-directions and therefore reduces the interference among
signals sent on these beams. This is the decoupling effect.
Moreover, the precoder allocates power on the beams. For
orthogonal eigen-beams, if all the beams have equal power, the
total radiation pattern of the transmit antenna array is isotropic.
Figure 9(a) shows an example of this pattern using a uniform
linear antenna array. If the beam powers are different, however,
the overall transmit radiation pattern will have a specific, non-
circular shape, as shown in Figure 9(b). By allocating power, the
precoder effectively creates a radiation shape to match to the
channel based on the CSIT, so that higher power is sent in the
directions where the channel is strong and reduced or no power
in the weak. More transmit antennas will increase the ability to
finely shape the radiation pattern and therefore will likely to
deliver more precoding gain.

[FIG8] A linear precoder structure as a multimode beamformer.
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RECEIVER STRUCTURE
Consider a system with an encoder producing a codeword C, and
a precoder F at the transmitter, as shown in Figure 5. The code-
word C is normalized according to the transmit power, which is
constant over time, with zero mean and covariance as defined in
(9). This codeword may contain channel coding, it may also rep-
resent only a ST codeword. An analysis for a system without a
channel code is referred to as uncoded, otherwise it is coded. A
system with ST coding alone thus qualifies for uncoded analysis.
In this system, we assume that C is predetermined and hence is
not a design parameter. In other word, the input codeword
covariance Q (11) is given and fixed.

At the receiver, the received signal then is

Y = HFC + N , (14)

where N is a vector of additive white Gaussian noise. The receiv-
er knows à prior the precoding matrix F and treats the combina-

tion HF as an effective channel. It detects and decodes the
received signal to obtain an estimate of the transmitted code-
word C. The receiver can use one of several detection methods,
depending on the performance and complexity requirements.
Here we discuss two representative methods, maximum-likeli-
hood (ML) and linear MMSE. ML detection is optimal, in which
the receiver obtains the codeword estimate Ĉ as

Ĉ = arg min
C

||Y − HFC ||2F . (15)

ML requires the receiver to consider all possible codewords
before making the decision and hence can be computationally
expensive. A simpler, although suboptimal, receiver is the linear
MMSE. In this case, the receiver contains a weighting matrix W,
which is designed according to

min
W

E ||Ĉ − C ||2F = E ||(W HF − I)C + WN ||2F , (16)

where the expectation is taken over the input signal and noise
distributions. For zero-mean signals with covariance in (11), the
optimum MMSE receiver is given as

W = γ QF ∗ H ∗(γ HFQF ∗ H ∗ + I)−1 , (17)

where γ is the SNR. Due to its attractive simplicity, the lin-
ear MMSE receiver has often been used in designing a pre-
coder [26]–[28]. A weighted MSE design, giving different
weights to different received signal streams, can yield differ-
ent criteria, such as maximum rate and target SNRs [26].
Other structures that are less computationally demanding
than ML include the sphere decoder, successive cancellation
receiver, and, if a channel code is present, iterative receiver
iterating between the channel decoder and a simple symbol
level detector (such as the MMSE).

In this article, however, to emphasize precoding at the
transmitter and its potential gains, we assume the optimal ML
receiver in the following analysis.

PRECODING DESIGNS
The precoder connects between the encoder and the channel.
Depending on the code used, the encoder produces codewords
with a certain covariance Q. We assume that this encoder, and
hence Q, is predetermined and is not a design target here. Such
a configuration is supported by the optimal principle of separat-
ing the channel coding (assuming no CSIT) and precoding
(exploiting the CSIT), discussed previously in the “Optimal use
of CSIT” section. It includes the case Q = I, in which the input
code can be capacity-optimal without CSIT and the precoder
then represents a linear transmitter. Further motivation comes
from the practical consideration of keeping the same channel
and ST coding in an existing system and adapting the precoder
alone to available CSIT. In all cases, the precoder transforms the
codeword covariance into the transmit signal covariance. A pre-
coder design essentially aims at producing the optimal signal
covariance according to the CSIT and a performance criterion.
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[FIG9] Orthogonal eigen-beam patterns of a uniform linear array
with 4 transmit antennas and unit distance between them. (a)
Equal beam power. (b) Unequal beam power. The purple dotted
line is the total radiated pattern (of the four eigen-beams) from
the antenna array.
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DESIGN CRITERIA
There are alternate precoding design criteria based on both fun-
damental and practical measures. The fundamental measures
include the capacity and the error exponent, while the practical
measures contain, for example, the PEP, detection MSE, SER,
BER, and the received SNR. Fundamental measures usually
assume ideal channel coding; the ergodic capacity implies that
the channel evolves through all possible realizations over arbi-
trarily long codewords, while the error exponent applies for
finite codeword-lengths. Analyses using practical measures, on
the other hand, usually apply to uncoded systems and assume a
quasistatic block fading channel. The choice of the design crite-
rion depends on the system setup, operating parameters, and
the channel (fast or slow fading). For example, systems with
strong channel coding, such as turbo or low-density parity
check codes with long codeword lengths, may operate at close to
the capacity limit and thus are qualified to use a coded funda-
mental criterion. Those with weaker channel codes, such as
convolutional codes with small free distances, are more suitable
using a practical measure with uncoded analysis. The operating
SNR is also important in deciding the criterion. As the SNR
increases, the shortest-distance input pairs increasingly domi-
nate the error rate, requiring coding for better average perform-
ance. Thus, a high SNR usually favors coded criteria for
designing precoders, while at low SNRs, uncoded criteria can
yield better performance.

Precoding design maximizing the channel ergodic capacity
has been studied extensively for various scenarios: perfect CSIT
[37], mean CSIT [7], [10]–[12], transmit covariance CSIT [7],
[14], [16], both transmit and receive covariance CSIT [15], [17],
and both mean and transmit covariance CSIT [8]. For more
practical measures, many of the earlier designs focused on per-
fect CSIT, often jointly optimizing both a linear precoder and a
linear decoder based on the MSE, the SNR, or the bit-error-rate
(BER) (see [26]–[29] and references therein). More recent work
considered partial CSIT. Precoding with mean CSIT was
designed to maximize the received SNR [7], or minimize the
SER [19], the MSE [20], or the PEP [18], [21]. Precoding with
transmit covariance CSIT was similarly developed to minimize
the PEP [22], the SER [23], or the MSE [24]. Precoding for both
mean and transmit covariance CSIT has been developed to mini-
mize the PEP [25]. In this article, we focus on two example cri-
teria, one from each measure: the ergodic capacity and the PEP.

MAXIMIZING THE SYSTEM ERGODIC CAPACITY
The system ergodic capacity criterion aims at maximizing the
average transmission rate with a vanishing error probability,
assuming asymptotically long codewords and an ideal ML
receiver. With perfect channel knowledge at the receiver, the
capacity-optimal input signal is zero-mean Gaussian distributed
with an optimal covariance [37]. For the system under study in
Figure 5, the input codeword covariance Q is predetermined,
hence we can only design the precoder F to produce a signal
covariance that achieves the maximum system transmission
rate, called the system capacity. This system capacity depends on

Q. When Q is the capacity-optimal covariance for the channel
without CSIT, then the system capacity coincides with the chan-
nel capacity; otherwise, it is strictly smaller.

With a given Q (11), the signal covariance for system in
Figure 5 is S = FQF ∗. The capacity-optimal precoder F then is
the solution of the optimization problem

max EH [log det(I + γ HFQF ∗ H ∗)]
subject to tr(FF ∗) = 1,

(18)

where γ is the SNR. This formulation maximizes the mutual
information, averaged over the channel distribution, subject to a
transmit power constraint. Here the codeword covariance Q is
predetermined and is not part of the design, and the constraint
is over the precoder F alone. This constraint is based on the
optimal separation between channel coding (assuming no CSIT)
and precoding (exploiting the CSIT) as discussed in [5] and later
generalized to MIMO in [6]. When Q = I, this constraint is the
same as total transmit power constraint and the system capacity
coincides with the channel ergodic capacity, such as the formu-
lation in [13]. (When Q is a nonidentity, the two constraints on
tr(FF*) and tr(FQF*) lead to a precoder with the same optimal
beam directions; only the power loadings are different. However,
we shall focus only on the tr(FF*) constraint in this article.)
Note that in (18), the objective function usually cannot be sim-
plified any further with partial CSIT and the optimization prob-
lem is stochastic.

MINIMIZING THE PAIR-WISE ERROR PROBABILITIES
The pair-wise error criterion, on the other hand, concerns
the probability of a codeword Ĉ having a better detection
metric at the receiver than the transmitted codeword C. In
this case, a parameter of interest is the distance product
between the two codewords

A = 1
P

(C − Ĉ )(C − Ĉ ) ∗, (19)

which is related to the codeword covariance. With ML detection,
the PEP can be upper-bounded by the well-known Chernoff
bound (similar to [39])

P(C → Ĉ ) ≤ exp
(
−γ

4
tr(HFAF ∗ H ∗)

)
, (20)

which provides an analytical framework for precoding design.
We consider two choices in minimizing the Chernoff bound on
the PEP: minimizing for a chosen codeword distance A, and
minimizing the average over the codeword distribution. The
corresponding criterion is referred to as the PEP per-distance
and the average PEP, respectively. In both cases, the perform-
ance averaged over channel fading is of interest.

For the PEP per-distance criterion, with a chosen A matrix,
the precoder F is designed to minimize the Chernoff bound,
averaged over the channel distribution as



min E
[
exp

(− γ
4 tr(HFAF ∗ H ∗)

)]
subject to tr (FF ∗) = 1.

(21)

For a fading channel with Gaussian distribution, the above
objective function can be explicitly evaluated as a function of the
channel mean and covariance [18]. In particular, for a channel with
mean Hm and transmit antenna correlation Rt, but no receive cor-
relation (i.e., Rr = I ), the above problem is equivalent to [25]

min tr(HmW−1 H∗
m) − M log det(W)

subject to W = γ
4 RtFAF ∗ Rt + Rt

tr(FF ∗) = 1.

(22)

In this case, the objective function becomes deterministic.
The convexity of this problem, which helps in providing analyti-
cal solutions, depends on the distance matrix A (19). An often
used A is the minimum codeword distance, which corresponds
to the maximum PEP. For some codes, the minimum A is well-
defined and can be a scaled-identity matrix, for which the prob-
lem has closed-form solution. Other choices of A include, for
example, the average codeword distance. Depending on the
code, the choice of A can significantly affect the performance of
the resulting precoder.

For the average PEP criterion, the Chernoff bound is aver-
aged over both the codeword distribution and the fading statis-
tics. This average PEP criterion is independent of the specific
codeword distance A (19). Noting that E[A] = 2Q (11), the pre-
coder optimization problem in this case becomes

min EH

[
det

(
I + γ

2 HFQF ∗ H ∗)−M
]

subject to tr(FF ∗) = 1.
(23)

Note the similarity between this formulation and the capacity
formulation (18), both involve the expectation of functions of
similar forms without a closed-form expression. Again, this for-
mulation includes a predetermined code with covariance Q, and
the constraint therefore is imposed over the precoder F alone (see
[18]–[25]). When Q = I, the formulation becomes similar to
those in [27]–[29] in the sense that F then represents the whole
linear transmitter. Thus it can be thought of as a generalization of
such setups to include a predetermined code with covariance Q.

CRITERIA GROUPING
In general, the precoder design problems can be divided into
two categories, stochastic or deterministic. Stochastic opti-
mization problem usually involves as the objective the expect-
ed value of a function over the channel distribution, in which
the expectation has no closed-form expression [57]. Often, the
function is convex in a matrix variable, for example,
logdet(.)−1, det(.)−1, or tr(.)−1. While the statistical properties
of the underlying channel distribution sometimes allow partial
closed-form solution (such as the beam directions), the full
solution usually requires numerical methods, in which the
objective function is approximated by, for example, sampling
or bounding. Deterministic problems, on the other hand,

involves a deterministic objective function, obtained in closed-
form from the problem formulation, with parameters given by
the CSIT. Examples of stochastic problems include the capaci-
ty, the error exponent, the average PEP and the MSE criteria;
while the deterministic includes the PEP per-distance, the
SER, and the SNR criteria. (The connection among the mutual
information, the sum MSE, and the Chernoff bound for STC, is
recently analyzed in [58].) In both categories, some formula-
tions lead to closed-form analytical precoder solutions, while
others may require numerical optimal solutions (often the sto-
chastic ones). Next, we will discuss typical precoder solutions
for these problems with different CSIT scenarios.

OPTIMAL PRECODER DESIGNS
A linear precoder composes of an input shaping matrix, a beam-
forming matrix, and the power allocation over these beams, as
discussed previously (12). For both criteria mentioned in the
“Design Criteria” section, the capacity and the PEP, together with
other criteria such as the error exponent, MSE, and SNR [56], the
optimal input shaping matrix is determined by the input code
alone, the beamforming matrix by the CSIT alone, and the power
allocation by both. We first discuss the optimal input shaping
matrix solution, which is independent of CSIT; then discuss the
optimal beam directions and power allocation for different CSIT
scenarios: perfect CSIT, covariance CSIT, mean CSIT, and statisti-
cal CSIT consisting of both mean and covariance information.

THE INPUT-SHAPING MATRIX
The encoder shapes the covariance (or the product distance
matrix) of the codeword input to the precoder; the precoder in
response chooses its input-shaping matrix to match this covari-
ance. Suppose the input codeword covariance matrix Q (9) has
the eigenvalue decomposition Q = UQ�Q UQ , the optimal
input-shaping matrix is then given by [55]

VF = UQ. (24)

This optimal input-shaping matrix results directly from the
predetermined input code covariance Q, which is not an opti-
mization variable nor involved in the power constraint (13). The
covariance Q characterizes the code chosen for the system. By
matching the input codeword covariance, the precoder spatially
de-correlates the input signal and optimally collects the input
energy. In the special case of isotropic input (Q = I ), such as
with spatial multiplexing, the optimal VF depends on the opti-
mization criterion. For all aforementioned criteria, including the
capacity, error exponent, MSE, PEP per-distance, average PEP,
and SNR, VF becomes an arbitrary unitary matrix and can usually
be omitted. For some other criteria (which can be characterized
using Schur convexity [54]), such as minimizing the maximum
MSE among the received streams or minimizing the average
BER, however, the optimal input-shaping matrix with Q = I
must be a specific rotational matrix [28], [29]. When channel
coding such as a turbo-code is considered with a practical con-
stellation, a rotational matrix can also improve performance [31].
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THE BEAMFORMING MATRIX
Unlike the input-shaping matrix, which is independent from the
CSIT, the beamforming matrix is a function of the CSIT. We now
present the optimal beamforming solutions for the CSIT models
developed previously: perfect CSIT, mean CSIT, covariance CSIT,
and statistical CSIT.

With Perfect CSIT
Given perfect CSIT, the MIMO channel can be decomposed into
independent and parallel additive-white-noise channels [37].
The number of parallel channels equals the minimum between
the numbers of transmit and receive antennas. These parallel
channels are established by first performing the SVD of the
channel matrix as

H = UH�HV ∗
H , (25)

then multiplying the signal at the transmitter with VH and at the
receiver with UH. The parallel channels can be processed inde-
pendently, each with independent modulation and coding, allow-
ing per-mode rate control and simplifying receiver processing.

The optimal beam directions with perfect CSIT for all aforemen-
tioned criteria are matched to the channel right singular vectors as

UF = VH. (26)

The optimality can be established using matrix inequalities that
show function extrema obtained when the matrix variables have
the same eigenvectors [54]. Therefore, the optimal beam direc-
tions are given by the eigenvectors of H ∗ H, or the channel
eigen-directions. For multiple-input single-output (MISO) sys-
tems, the solution reduces to the well-known scheme: transmit
maximum-ratio-combined (MRC) single-mode beamforming
[35]. These optimal beam directions are independent of the SNR.

Consequently, the optimal precoder matrix for perfect
CSIT, under all criteria and at all SNRs, has the left and right
singular vectors determined separately by the eigenvectors of
the channel gain H ∗ H and the input codeword covariance Q,
respectively. Therefore, the precoder spatially matches both
sides. It effectively re-maps the spatial directions of the input
code into those optimally matched to the channel given the
CSIT, as shown in Figure 10.

With Mean CSIT
Mean CSIT composes of an arbitrary effective mean matrix
Hm and an identity effective covariance. This model can cor-
respond to an uncorrelated Rician channel or to a channel
estimate with uncorrelated errors. Let
the SVD of Hm be Hm = Um�mV∗

m ,
then the optimal precoding beam
directions for all criteria are given by
the right singular vectors of this effec-
tive mean

UF = Vm. (27)

The proof for the capacity criterion can be found in [10]–[12]
and can be extended to other stochastic formulations. The proof
for the PEP criterion, which has a deterministic formulation, is
first established in [18].

Note that these directions are also the eigenvectors of H∗
m Hm.

In effect, because the identity channel covariance is isotropic, the
channel mean eigen-directions become the statistically preferred
directions. They are the channel eigen-directions on average, and
signaling along these directions is optimal.

With Covariance CSIT
Covariance CSIT composes of a zero effective-mean and an
arbitrary effective-covariance. From the model developed, the
effective covariance is a linear function of the antenna correla-
tion matrix. This matrix captures the correlations among all
the transmit antennas, among all the receive antennas, and
between the transmit and receive antennas. A common, simpli-
fied correlation model assumes that the transmit and the
receive antenna arrays are uncorrelated, often occurred when
these arrays are sufficiently far apart with enough random scat-
tering between them [47]. The transmit antenna correlation Rt

and the receive antenna correlation Rr can then be separated
according to a Kronecker structure as

R0 = RT
t ⊗ Rr. (28)

This Kronecker correlation model has been experimentally veri-
fied for indoor channels of up to 3 × 3 antennas [48], [49], and
for outdoor of up to 8 × 8 [50]. More general antenna correla-
tion models have also been proposed in [51], [52], in which the
transmit covariances (Rt) corresponding to different reference
receive antennas are assumed to have the same eigenvectors,
but not necessarily the same eigenvalues; similarly for Rr.

The optimal beamforming matrix has been established for
covariance CSIT assuming the Kronecker correlation model
(19). Furthermore, since precoding is primarily affected by
transmit correlation, we assume uncorrelated receive antennas
(Rr = I ) in most cases, unless otherwise specified. Let the
eigenvalue decomposition of Rt be Rt = Ut�tU ∗

t , then the opti-
mal beamforming matrix for all criteria is given by the transmit
correlation eigenvectors

UF = Ut. (29)

The proof for the capacity criterion can be found in [10] and
[14] and for the PEP criterion, in [22]. The techniques in these
proofs can be applied to other criteria.

[FIG10] The precoder matches both the input code structure and the channel.
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Thus for a zero-mean channel, the correlation between the
transmit antennas dictates the beam directions: its eigenvectors
are the statistically preferred directions. When the antennas are
uncorrelated, the beamforming matrix becomes an arbitrary
unitary matrix and can be omitted. For the channel capacity cri-
terion, even if the receive antenna correlation exists (Rr �= I ), it
has no effect on the optimal beamforming directions [15]. The
optimal beam directions for a non-Kronecker correlation struc-
ture, however, is still an open problem.

With Statistical CSIT
For statistical CSIT involving an arbitrary effective-mean and an
arbitrary effective-covariance matrix, the optimal beamforming
matrix has been established for only a few criteria, the PEP per-
distance and the SNR. For the PEP per-distance criterion (21),
assuming transmit antenna correlation alone, if the input code-
word is isotropic such that Q = μ0 I, the optimal beamforming
matrix can be obtained as part of the optimal precoder as

FF ∗ = 4
γμ0

(
� − R−1

t

)
(30)

where � is given by

� = 1
2ν

[
MI +

(
M 2 I + 4ν R−1

t H∗
m Hm R−1

t

)1/2
]

(31)

in which ν is the Lagrange multiplier associated with the power
equality constraint in (21). Solving for ν is carried out using a
dynamic water-filling process [25]. This process is similar to the
standard water-filling, in that at each iteration, the weakest
eigen-mode of FF ∗ may be dropped to ensure its positive semi-
definiteness, and the total transmit power is re-allocated among
the remaining modes. There is, however, a significant difference
in that the mode directions here also evolve at each iteration.
Details of the algorithm solving for ν can be found in [25].

The optimal beam directions of (30) depend on both the
channel mean and covariance and are complicated functions of
the channel K factor and the SNR. At high K, the channel mean
Hm tends to dominate the beam directions; but as K drops, the
channel covariance R−1

t has more dominant effect. The SNR
also influences the beam directions here, in contrast to the pre-
vious special CSIT cases. At low SNR, the PEP-optimal beam
directions depend on both the mean and the covariance, but as
the SNR increases, they asymptotically depend on the covari-
ance alone. This effect shows that at high SNRs, the channel
variation becomes more dominant in affecting the precoder.

For the SNR criterion, on the other hand, the precoder aims
to maximized the received SNR by single-mode beamforming at
all SNRs, with the beam as the dominant eigenvector of the
average channel gain E [H ∗ H ].

For other criteria such as the capacity, a suboptimal solution
for the beamforming matrix with statistical CSIT can be obtained
by using the eigenvectors of the average channel gain E [H ∗ H ].
At low SNRs, this solution is asymptotically capacity-optimal,
while also being optimal for the PEP and SNR criteria. At high

SNRs, if the number of transmit antennas is no more than the
receive, it is also asymptotically capacity-optimal since the opti-
mal input then becomes isotropic with an arbitrary set of beams.
(With more transmit than receive antennas, however, the capaci-
ty-optimal solution may still require specific beamforming with
unequal power among the beams at all SNRs, for example, when
there is a strong antenna correlation or a strong channel mean
[8].) Note that when applied to the special cases, mean CSIT and
covariance CSIT, these beamforming directions become optimal.

THE POWER ALLOCATION
In contrast to the beam directions, the optimal power allocation
across the beams varies for each design criterion and is a func-
tion of the SNR. With perfect CSIT, for example, it varies from
water-filling for capacity to single-mode for the PEP criterion.
The difference reflects the selectivity in power allocation, in
which the more selective scheme allocates power to fewer
modes at the same SNR. The power allocation tends to become
more selective when the criterion shifts from fundamental
(coded) towards practical (uncoded). In other words, this selec-
tivity depends on the strength of the channel code. Systems
with strong codes tend to allocate power to more channel eigen-
modes, while those with weak codes tend to activate fewer, only
strong modes, and drop the rest at the same SNR.

CSIT also affects the optimal power allocation. With perfect
CSIT, the optimal power allocation is known in analytical closed-
form for all criteria; while for partial CSIT, the solution may require
numerical methods, depending on the criteria. However, the opti-
mal power allocation often follows the water-filling principle, in
which higher power is allocated to the beams corresponding to
known strong channel directions, and reduced or no power to the
weak. Next, we discuss the power solution each CSIT scenario, per-
fect CSIT, mean CSIT, covariance CSIT, and statistical CSIT.

With Perfect CSIT
As established in the previous two sections, the precoder with
perfect CSIT matches to the input codeword covariance Q on
the one side and to the channel H on the other. Because of this
direction matching, the optimal power allocation depends only
on the eigenvalues of both the input codeword covariance and
the channel, but not their eigenvectors. Denote the eigenvalue
product of these two matrices as

λi = λi(H ∗ H )λi(Q), (32)

where the eigenvalues of each matrix are sorted in the same
order. The power pi allocated to beam number i, which is the
square of the precoder singular value number i, is a function of
these λi and the SNR.

For the capacity criterion (18), the optimal power allocation
is obtained through water-filling on the composite eigenvalues
λi as [37]

pi =
(

μ − N0

λi

)
+

, (33)
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where N0 is the noise power per spatial dimension, and μ is cho-
sen such that the sum of all pi equals the total transmit power.
Notation (.)+ represents the value inside the parenthesis if this
value is positive, and zero otherwise.

Similarly, for the average PEP criterion (23), the optimal
power allocation is water-filling as for the capacity, but with the
noise scaled-up by a factor of two. This solution thus is a more
selective power allocation scheme. At low SNRs, weak modes
tend to have a high error rate; therefore, dropping these modes
and allocating power to stronger modes leads to better overall
system error performance. As the SNR increases, power is allo-
cated across more modes, but again, at a slower rate than is the
case for the capacity solution.

For the PEP per-distance criterion (21), the optimal solution is
to allocate all power to the strongest eigen-mode of the channel,

p1 = 1, and pi = 0 for i �= 0 , (34)

thus effectively reducing the precoder to single-mode beamform-
ing. This scheme is an extreme case of selective power allocation;
it also maximizes the received SNR. Furthermore, it achieves the
full transmit-diversity (see proof in [3], Section 5.4.4).

Perfect CSIT usually simplifies the power allocation problem
significantly and allows for closed-form solution for most crite-
ria (for other examples, see [24], [26]–[29]). With partial CSIT,
however, the power allocation often requires numerical solu-
tions, especially with the stochastic problems.

With Mean CSIT
With mean CSIT, the power allocation depends only on the sin-
gular values of the effective channel mean, but not its singular
vectors. The capacity criterion (18) requires numerical, convex
search for the optimal power. For the PEP per-distance criterion
(21), the power allocation has a semi-analytical solution,
obtained as a form of water-filling [55]

pi =
⎡
⎣ 1

2ν

⎛
⎝M +

√
M 2 + 16ν

λi
(
H∗

m Hm
)

γλi(A)

⎞
⎠ − 4

γ

⎤
⎦

+

(35)

where λi(.) are the eigenvalues of the corresponding matrix,
sorted in the same order, and ν is the Lagrange multiplier asso-
ciated with the equality power constraint. Simple binary search
algorithm for finding ν can be found in [55], [56]. The solution
with A = I can also be found in [18].

For all criteria, the channel K factor and the rank of the
mean matrix can have a strong influence here. A larger K factor
causes the power allocation to depend strongly on the channel
mean; for example, a rank-one mean then is likely to result in
single-mode beamforming. Specifically for the channel capacity
criterion [(18) with Q = I], if the K factor is above a certain
threshold increasing with the SNR, single-mode beamforming is
optimal for MISO systems [7]. When K approaches infinity,
mean CSIT becomes equivalent to perfect CSIT. As K decreases,
however, the impact of the channel mean diminishes. If K

reduces to zero, the optimal allocation approaches equipower,
hence the precoder becomes an arbitrary unitary matrix and can
be omitted.

With Covariance CSIT
With covariance CSIT, in which the antenna correlation has a
Kronecker structure, the optimal power allocation depends only
on the eigenvalues of the correlations, but not their eigenvec-
tors. Both transmit and receive correlation eigenvalues affect
the optimal power allocation for the capacity criterion [15],
which requires convex numerical solving techniques. For the
PEP per-distance criterion (21) without receive correlation, the
optimal power allocation can be obtained analytically by water-
filling over the transmit correlation eigenvalues [22]

pi =
(

μ − 4
γ

λ−1
i (A)λ−1

i (Rt)

)
+

(36)

where λi(.) are the (nonzero) eigenvalues of the corresponding
matrix, and μ is chosen such that the sum of all pi equals the
total transmit power.

For all criteria, the stronger the antenna correlation, meas-
ured by a larger condition number for example, the more selec-
tive the optimal power allocation becomes. An extreme case of
selectivity is single-mode beamforming. Thresholds for its opti-
mality are observed for covariance CSIT in MIMO systems [14],
[15], in which two largest eigenvalues of Rt must satisfy an
inequality related to the dominance of the largest eigenvalue.
Intuitively, if this largest mode is sufficiently dominant, then
water-filling will drop all other modes. At higher SNRs, the
required eigenvalue dominance must increase, implying a more
correlated channel. A similar trend is observed for an increasing
number of receive antennas. If Rt is full-rank, however, the
capacity-optimal power allocation for systems with equal or
fewer transmit than receive antennas always asymptotically
approaches equipower as the SNR increases.

Furthermore, the impact of correlation, particularly the
eigenvalues of Rt, on the average mutual information under
different CSIT conditions—perfect, covariance, and no CSIT—
can be described using majorization theory [16]. Transmit
antenna correlation generally reduces the channel ergodic
capacity at high SNRs, compared to an i.i.d channel, but the
loss is bounded as the number of transmit antennas increases.
At low SNRs, on the other hand, transmit correlation can help
increase the capacity (see [8] and references therein).

With Statistical CSIT
For the ergodic capacity (18), as with most stochastic criteria,
in contrast to the beamforming matrix, the optimal power
allocation is so far unavailable in closed-form for statistical
CSIT, including both mean and covariance CSIT as special
cases. It often requires a numerical solution, which can usual-
ly be efficiently implemented because of the convexity of the
problem [53]. The power solution now depends on both the
eigenvalues and the eigenvectors of the mean and covariance



matrices. At low SNRs, the optimal power allocation concen-
trates all power in a single beam, often the dominant eigenvec-
tor of E [H ∗ H]. As the SNR increases, transmit power is
spread to an increasing number of beams to a maximum that
depends on the antenna configuration and the CSIT parame-
ters. With statistical CSIT, a N-transmit antenna system can
activate up to N orthogonal beams. When there are equal or
fewer transmit than receive antennas (N ≤ M ), all N beams
will be activated and the allocation approaches equipower at
high SNRs, at which the precoder can usually be omitted.
When there are more transmit than receive antennas
(N > M ), however, CSIT parameters strongly influence the
optimal power allocation. Channels with a strong mean or a
strong transmit antenna correlation may activate only a frac-
tion of the beams (fewer than N ) even at high SNRs. Simple
thresholds on the channel K factor and the transmit covari-
ance condition number for mode-dropping at all SNRs can be
derived [8]. For a transmit covariance matrix with two levels of
eigenvalues, for example, mode-dropping always occurs when
its condition number satisfies

κ ≥ L
L − M

(37)

where L is the number of stronger eigenmodes, provided that
N > L > M. Using the inverted noncentral complex Wishart
distribution, a threshold on the channel K factor can also be
established, independent of the number of receive antennas [8].

For the PEP criterion (21), the optimal power, as part of the
optimal precoder, has a semi-analytical solution given in (30),
obtained using a dynamic water-filling algorithm [25], in
which both the beam power and the beam direction evolve
with the water-filling iterations. The asymptotic behavior of
this precoder when the channel K factor or the SNR increases
is worth noting. When K increases, the precoder converges to
a solution dependent on the channel mean alone; furthermore,
it becomes a single-mode beamformer aligned to the dominant
right-singular-vector of Hm, hence maximizing the received
signal power. As the SNR increases, however, the precoder
approaches a solution dependent on the transmit correlation
alone, and the power allocation approaches equipower. If both
the K factor and the SNR increase, then there exists a K factor
threshold increasing with the SNR, above which the optimal
power allocation results in a single-beam precoder. In
“Precoding with Dynamic CSIT,” we show an example of this
single-beam threshold.

DISCUSSION
The presented precoding designs lead to several observations.
First, the optimal input shaping matrix, composing of the pre-
coder right-singular-vectors, is the same for all CSIT scenarios
at all SNR. It is matched to the covariance of the precoder input
signal. This input shaping matrix ix optimal for most criteria,
including the ergodic capacity, the PEP, and others such as the
SNR, MSE, or error exponent [56]. When the precoder input

covariance is the identity matrix, the optimal input shaping
matrix becomes an arbitrary unitary matrix and can be omitted
for these criteria; but for some others, a fixed-rotation matrix is
required [28]. Second, the beamforming matrix, composing of
the precoder left-singular-vectors, is independent of the design
criteria and the SNR for most CSIT scenarios, except the general
statistical CSIT case. These optimal beam directions are
matched to the channel according to the CSIT, often as the
eigenvectors of the channel mean or transmit covariance
matrix. When both the mean and transmit covariance are pres-
ent, however, the beam directions becomes dependent on the
criterion and the SNR. Third, the main difference among the
precoding solutions under different criteria is the power alloca-
tion. For both the ergodic capacity and the PEP criteria, the
optimal power allocation follows the water-filling principle, in
which higher power is allocated to stronger modes and reduced
or none to weaker ones as a function of the SNR. This power
selectivity, however, depends on the criterion. More selective
schemes tend to drop more modes at low SNR. For examples,
the selectivity increases going from the capacity to the PEP cri-
terion. As the SNR increases, most power allocation schemes
approach equipower, but at different rates. A more selective
scheme approaches equipower more slowly. Schemes that do
not approach equipower at high SNR occur under the PEP crite-
rion with perfect CSIT, or generally with statistical CSIT involv-
ing a strong mean or a strong antenna correlation in channels
with more transmit than receive antennas. Power allocation
according to the water-filling principle also applies to other cri-
teria such as the error exponent [56], the SER [19], [23], but by
no means to all criteria. The MSE criterion, for example, tends
to allocate more power to weaker channel modes [24]. The beam
power allocation depends strongly on the performance criterion
and the SNR and can be the main factor in differentiating the
performance of different precoders.

A linear precoder therefore has two main effects: decoupling
the signals into orthogonal spatial directions to reduce the
interference between them, and allocating power to these direc-
tions according to the channel strength. In short, the precoder
optimally collects the input signal power and spatially redistrib-
utes this power into the channel according to the design criteri-
on and the CSIT.

The water-filling type power allocation leads to mode-drop-
ping at low SNR. For a practical constellation, care should be
taken in system design to ensure that the employed encoder
functions in such a situation, especially for high rate codes. In
most cases, the input-shaping matrix combines input codeword
symbols such that all symbols are transmitted even with mode-
dropping. With an identity codeword covariance (Q = I ), even
though the input shaping matrix can theoretically be omitted,
some rotation matrix may still be necessary for practical con-
stellations to ensure the transmission of all distinct symbols. An
initial study of this rotation effect for spatial multiplexing can be
found in [31]. The precoder input shaping matrix, thus, helps to
prevent the adverse effect of mode-dropping with practical con-
stellations on the system performance.
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PRECODING NUMERICAL PERFORMANCE

SIMULATION SETUP
The simulation system has four transmit and two receive anten-
nas and employs the quasiorthogonal STBC [40], [41]. Although
a 4 × 2 system can support up to a spatial rate of two, this STBC
has only the spatial rate one. With this STBC, the precoder input
shaping matrix (24) is the identity matrix and is omitted. The
system employs the [133, 171] convolutional code with rate one-
half, used in the IEEE 802.11a wireless LAN standard, a block
interleaver, and QPSK modulation. The receiver uses ML detec-
tion and a soft-input soft-output Viterbi decoder.

System performance is measured for two representative
CSIT scenarios: perfect CSIT, and dynamic CSIT (4) involving
both channel mean and transmit covariance information.
Assume quasistatic block-fading channels, the block-length for
the perfect CSIT is 96 bits, and for dynamic CSIT is 48 bits.
Performance without and with different precoders, based on the
PEP per minimum-distance (21), average PEP (23), and system
capacity (18) criteria, are studied.

PRECODING WITH PERFECT CSIT
Precoding with perfect CSIT can be viewed as the ideal case for
reference. Although precoding with perfect CSIT has been stud-
ied under different criteria, comparative performance of the dif-
ferent designs using the same system setup can draw some
useful observations. For these simulations, the channel is
assumed to be i.i.d. Rayleigh fading (Hm = 0 and R0 = I ).

Figure 11 shows the error rate performance of the different
precoders. All three precoder designs achieve substantial gains,
measured in both uncoded (without the convolutional code) and
coded (with the convolutional code) domains, with larger gain in
the latter (up to 6 dB SNR gain at 10−4 coded bit-error-rate). Such
a gain is consistent with the analytical capacity gain (8). Since the
QSTBC provides only partial diversity, some additional diversity
gain is obtained by the precoder, evident through the higher slopes
of the precoded error curves in the uncoded systems. In both
uncoded and coded systems, however, most of the precoding gain
appears in the form of a coding gain. This coding gain is attributed
to the optimal beam directions and the water-filling-type power
allocation. To differentiate the gain from each effect, a two-beam
precoder with the optimal directions, given by the channel right
singular vectors, but equal beam-power allocation is also studied.
Results show that with perfect CSIT, optimal beam directions
alone achieve a significant portion of the precoding gain. A water-
filling-type power allocation further improves the gain, especially
at low SNRs. Thus, both the precoder beam directions and the
power allocation contribute to the performance gain.

These results also reveal only minor performance differences
among precoder designs according to the three criteria. The
minimum-distance PEP precoder, which also maximizes the
received SNR, achieves the best gain here, attributed to the small
number of receive antennas. The other two precoders, based on
the capacity and the average PEP criteria, perform similarly. This
relative performance order is dependent on the CSIT and the sys-

tem configurations, including the number of antennas, channel
coding, and the STBC; it may change for a different system.

PRECODING WITH DYNAMIC CSIT
This section examines precoding performance with dynamic
CSIT. For the system capacity and average-PEP criteria, unfortu-
nately, no analytical solutions exist for the optimal precoders.
The optimal precoder based on the minimum-distance PEP (30)
is used. The transmit correlation matrix has the eigenvalues
[2.717, 0.997, 0.237, 0.049], representing a relatively strong cor-
relation with the condition number of 55.5, and the channel
mean has K = 0.1. System performance is obtained for different
values of the estimate quality ρ between 0 and 1. The error
probabilities are averaged over multiple initial channel measure-
ments H0, randomly and independently drawn from the simu-
lated channel distribution, and multiple channel estimates given
each initial measurement.

[FIG11] Precoding performance with perfect CSIT. (a) Uncoded
and (b) coded.
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Performance results for different values of ρ are given in
Figure 12. The precoding gain increases with a better CSIT
quality. Depending on ρ , the gain ranges between statistical
CSIT and perfect CSIT gains. When ρ = 0, the precoder
achieves a performance gain based on statistical CSIT alone
(channel mean and covariance information); as ρ approaches 1,
the precoding gain increases to that with perfect CSIT. It is also
noted through simulations that in dynamic CSIT, the initial
channel measurement H0 helps increase the precoding gain
over the statistical CSIT gain only when its correlation with the
current channel is sufficiently strong: ρ ≥ 0.6; otherwise, pre-
coding on the channel statistics alone can extract most of the
gain. Furthermore, when the CSIT is imperfect (ρ < 1), the
precoder does not provide diversity gain, in contrast to the per-
fect CSIT case. This observation is confirmed by analyses show-
ing that the high-SNR asymptotic BER slope is independent of
ρ for ρ �= 1 [55]. Thus with partial CSIT (ρ < 1), the precoder
only achieves an SNR gain, and the system transmit diversity is
determined by the ST code (and the channel code if that exists).

With perfect CSIT (ρ = 1), the precoder also delivers the maxi-
mum transmit diversity gain of order N.

For comparison, we also study a single-beam scheme that
relies only on the initial channel measurement, shown in
Figure 13. This scheme coincides with the optimal PEP pre-
coder for perfect CSIT (ρ = 0.99 in the simulation). For other
ρ values, however, the scheme performs poorly. It looses all
transmit diversity regardless of the STBC and performs worse
than no precoding at high SNRs. The optimal precoder exploit-
ing dynamic CSIT, on the other hand, provides gain at all SNRs
for all ρ. This result demonstrates the robustness of the dynam-
ic CSIT model.

Figure 14 shows the regions of different number of active
(non-zero power) precoding beams, as a function of the channel
K factor and the SNR. A higher K factor leads to fewer beams,
whereas a higher SNR leads to more beams. The thresholds in K
factor for different beam regions increase with the SNR; at very
low K factors, however, the regions appear to depend little on K
but only on the SNR. Other design criteria may lead to different
precoding beam regions.

These numerical results illustrate significant precoding
gains. The gain depends on the CSIT, the number of antennas,
the system configuration (encoder and receiver), and the SNR. It
usually increases with better CSIT, quantified by the estimate
quality ρ in the dynamic CSIT model, and with more antennas.
The gain, however, is less dependent on the design criteria: simi-
lar BER performance among precoders based on different
criteria has been observed numerically [56]. While with perfect
CSIT, the precoders achieve the maximum transmit diversity,
the main benefit of precoding in all CSIT scenarios comes from
the SNR gain (also called the coding gain). Two factors con-
tribute to the precoding gain: the optimal beam directions and
the water-filling type power allocation. Both of these result in an
SNR advantage.

PRECODING APPLICATIONS 
IN EMERGING WIRELESS STANDARDS
Precoding has been successfully integrated into the IEEE
802.16e standard for broadband mobile wireless metropolitan
networks (WiMax). Both open- and close-loop techniques are
included. In the open-loop technique, a subset of users are
scheduled to transmit a sounding signal. The base station then
estimates the channels for these users and determines the CSIT
for precoding use after transmit-receive RF calibration. In the
closed-loop technique, the precoder uses either an initial chan-
nel measurement or the channel statistics. The users measure
the channel using the forward-link preambles or pilots, then
feed back the best codeword, usually a unitary-fit, representing
this channel measurement from a codebook, along with a time-
to-live parameter. The precoder uses the unitary-fit until the
time-to-live expires; thereafter, it relies on the channel statistics
information, which is updated at a much slower rate and is
always valid.

MIMO is expected to enter the IEEE 802.11n standard for
wireless local area networks (WLAN), with support for both ST
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[FIG12] Performance with dynamic CSIT for a precoded 4 × 1
system using OSTBC. (a) Uncoded and (b) coded.
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coding and spatial multiplexing. The current precoding propos-
als use an open-loop method, based on the reciprocity principle
implying that the best beam on reception must be the best beam
for transmission. The base uses preformed beams for receiving
and transmitting and records the beam(s) with the best signal
strength on reception from each user, then uses the same
beam(s) during the next transmission to that user.

The 3GPP standard uses a closed-loop beamforming tech-
nique, based on the quantized feedback of the channel phase
and amplitude. Precoding is under discussion in High-Speed
Downlink Packet Access (HSDPA) for mobile communication.
Channel-sounding appears to be the preferred technique for
obtaining CSIT.

CONCLUSION

MIMO LINEAR PRECODING
This article has provided an overview of linear precoding tech-
niques for exploiting CSIT in single-user, frequency-flat MIMO
wireless systems. It discusses principles and methods for
acquiring the CSIT, including open- and closed-loop tech-
niques, and related issues such as sources of error, system
overhead, and complexity. A dynamic CSIT model is formulat-
ed as an estimate of the channel at the transmit time with the
associated error covariance. Dynamic CSIT can be obtained
using a potentially outdated channel measurement, the first-
and second-order channel spatial statistics, and the channel
temporal correlation, thereby taking into account the channel
time-variation. This CSIT model delivers robust precoding
gain for different CSIT qualities.

Information theoretic foundation establishes the optimality of
a linear precoder in exploiting dynamic CSIT. A linear precoder
functions as the combination of an input shaper and a multimode
beamformer that contains orthogonal beam-directions, each with
a defined beam-power. We discuss linear precoder solutions under
different design criteria for several CSIT scenarios: perfect CSIT,
mean CSIT, covariance CSIT, and statistical CSIT, as parts of the
dynamic CSIT model. Simulation examples, using a spatial rate
one QSTBC transmission, demonstrate that precoding can
improve error performance significantly. For higher spatial rate
transmissions (such as spatial multiplexing), although not dis-
cussed in this article, precoding can also improve the capacity and
error performance at all SNRs for systems with more transmit
than receive antennas, and at low SNRs for others.

The essential value of precoding in exploiting CSIT is to
add an SNR gain. This gain is achieved by the optimal eigen-
beam patterns and the spatial power allocation across these
beams.  The optimal beam patterns (directions) can con-
tribute to a significant part of the gain, but the power alloca-
tion becomes increasingly important as the SNR decreases.
Both features help increase the transmission rate (the system
capacity) and reduce the error probability. If the CSIT is per-
fect, precoding can also deliver a diversity gain; in addition, it
helps reduce receiver complexity for higher spatial-rates by
allowing parallel channel transmissions.

RELATED RESULTS
Looking beyond the scope of this article, precoding theory has
been developed for other types of CSIT, limited-feedback scenar-
ios, frequency-selective channels, and multiuser communica-
tions. We now briefly mention a few key ideas and selected
references for interested readers.

While this article models CSIT as an estimate of the entire
channel and its error covariance, there are also other types of less
complete CSIT. For example, in a high-K channel, the K factor and
the antenna-to-antenna phase statistics offer near-optimal precod-
ing performance using beamforming and antenna power alloca-
tion [59]. A known channel condition number suggests adapting
the transmission spatial rate [60]. These types of parametric CSIT
help reduce the amount of overhead incurred in CSIT acquisition.

For feedback techniques in slow time-varying channels, the
problem of overhead also motivates data compression tech-
niques to minimize feedback. The compressed feedback

[FIG13] Performance comparison between optimal PEP precoding
and H0 beamforming.
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[FIG14] Regions of different number of active precoding beams.
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information can be, for example, selected and important chan-
nel information for precoding [33], the index of the precoder
from a codebook [61], [62], or quantized channel information
[63], [64] (and references therein). Often in such cases, the feed-
back information is tied to the specific precoding technique. The
feedback overhead has motivated the area of finite-rate or limit-
ed feedback precoding (see [65] for an overview).

When the channel is frequency-selective, the precoder can also
exploit this selectivity and become frequency-dependent. For sin-
gle-carrier systems, nonlinear precoding techniques using spatial
extensions of the Tomlinson-Harashima precoder can be employed
[66], [67]. For multicarrier systems such as OFDM, frequency-flat
precoding techniques discussed in this article can be applied on a
per tone (subcarrier) basis. To reduce feedback overhead in OFDM,
the CSIT feedback is sampled and interpolated in the frequency
domain [68]. Exploiting the OFDM structure and tone correlation
results in precoders with frequency-dependent eigen-beam direc-
tions and frequency-beam dependent power allocation [69], [70].

In wireless multiuser communications, partial CSIT is also
highly relevant, since the channel time-variation makes it imprac-
tical to have perfect CSIT at all users. Initial research has shown
that the loss of degrees of freedom due to no CSIT reduces the
capacity region of an isotropic vector broadcast channel to that of
a scalar one [71]. Imperfect CSIT also severely reduces the growth
of the sum-rate broadcast capacity at high SNRs [72]. Schemes
such as opportunistic scheduling, which requires only an SNR
feedback, can achieve an optimal throughput growth-rate in
broadcast channels with a large number of users [73]. With finite-
rate feedback, however, the feedback rate needs to be increased
with the SNR to achieve the full multiplexing gain [74].

With these results, precoding techniques that exploit partial
CSIT continue to be an important research area with direct
practical applications.
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