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Abstract— In this paper, we study a wireless multiple-input
multiple-output system in a Rayleigh flat-fading environment
with correlation among the transmit antennas. We assume that
the receiver has perfect CSI and the transmitter only knows the
correlation matrix. The transmitter employs a quasi-orthogonal
space-time block code in combination with a linear precoder; the
receiver uses a linear MMSE detector.

We analyze the optimal transmit precoding strategy that
minimizes the average sum MSE at the receiver. We show that,
as expected, the optimal precoding directions coincide with the
eigenvectors of the transmit correlation matrix. The optimal
power allocation, however, only supports at most 2 directions
at all SNRs independent of the number of transmit antennas,
which correspond to the 2 largest eigenvalues of the transmit
correlation matrix. We characterize this optimal power allocation
by the necessary and sufficient optimality conditions. At high
SNRs, the optimal allocation approaches equal power on the two
supported modes. At low SNRs, the weaker mode is dropped
and the precoding matrix becomes single-mode beamforming.
We provide a closed-form expression characterizing this low-SNR
range. Numerical simulations confirm our theoretical analysis.

I. INTRODUCTION

It has been shown that in a sufficiently rich scattering
environment the capacity of multiple antenna systems grows
linearly with the minimum of antennas used at the transmitter
and receiver [1]. Different types of channel state information
(CSI) at the transmitter were studied, e.g. no CSI, perfect
CSI [1] and imperfect CSI [2] as mean-feedback [3]–[5] or
covariance feedback [4], [6], [7]. For MIMO systems with
partial CSI the eigenbeamforming concept was coined in
[8] and the impact of imperfect CSI was analyzed recently
in [9], [10]. Furthermore, transmit strategies using a linear
precoder in combination with space-time codes like orthogonal
space-time block codes (OSTBC) and quasi-orthogonal space-
time block codes (QSTBC) have been analyzed in [5], [11]
and [12], [13], respectively. A framework for the case in which
mean and covariance information at the transmitter is available
is treated in [14].

In the optimization of the capacity and the error rate perfor-
mance it is often assumed implicitly that maximum-likelihood
(ML) detection will be performed at the receiver. This task,
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however, requires an exhaustive search, which becomes more
and more computationally infeasible especially for high num-
ber of transmit antennas and higher modulation orders. In
contrast to the capacity and error rate considerations with the
optimal receiver structure, in this work, we assume that the
receiver applies a linear minimum mean square error (MMSE)
receiver. The transmitter employs a QSTBC in combination
with a linear precoder. As a result of using the MMSE, the
performance metric to optimize is the average normalized
MSE. Optimizing the MSE is also relevant for detectors
employing a linear front end like the VBLAST algorithm
or sphere detectors. Given the aforementioned scenario, we
analyze the optimal transmit strategy, i.e. the optimal transmit
direction, which determines the eigenvectors of the precoding
matrix, and the optimal power allocation, which determines the
eigenvalues of the precoding matrix. We show that it is optimal
to transmit into the direction of the eigenvectors of the transmit
correlation matrix. The optimal power allocation is character-
ized using the necessary and sufficient optimality conditions. It
turns out, that for high SNR only the two largest eigenvalues of
the correlation matrix are supported, which is counterintuitive.
We show that for small SNR values, the optimal precoding
matrix has rank one, i.e. single mode beamforming is optimal.
A closed form expression characterizing the SNR range, in
which only one eigenvalue is supported, is derived. Finally,
we illustrate the theoretical results by numerical simulations.

II. SYSTEM MODEL, QSTBC AND NORMALIZED AVERAGE

MSE

A. System model

Suppose that the transmitter has N antennas and the receiver
has M antennas. Consider a quasi-static flat fading channel H
with transmit antenna correlation, the channel can be modeled
as H = WR1/2

t , where W has identically independently
distributed (iid) complex Gaussian entries (W ∼ CN (0, I))
and Rt is the transmit correlation matrix. Let the eigen-
value decomposition of Rt be Rt = URΛRUH

R , with the
eigenvalues [r1, ..., rN ] = diag (ΛR) decreasingly ordered as
r1 ≥ r2 ≥ . . . ≥ rN ≥ 0. The power of the Rt is normalized
such that trace(Rt) = N .

With the N × T transmit matrix X = [x1,x2, . . . ,xT],
where xt is the signal vector at time instant t, 1 ≤ t ≤ T , the



received signal vector yt at time instant t is then given by

yt = Hxt + nt (1)

where nt ∼ CN (0, σ2
nI) is the additive white Gaussian noise

(AWGN). The transmit signal has the covariance matrix Q =
E
[
xxH

]
with the eigenvalue decomposition Q = UQΛQUH

Q .
Again we order the eigenvalues [p1, ..., pN ] = diag (ΛQ)
decreasingly as p1 ≥ p2 ≥ ... ≥ pN ≥ 0. Assuming a total
transmit power P , then tr(Q) ≤ P . We define the transmit
SNR as ρ = P

σ2
n

.

B. QSTBC

We consider a system with a QSTBC G, with X = Q1/2G,
at the transmitter. The QSTBC G for N transmit antenna is
constructed as follows. Starting with the well known Alamouti
scheme [15] for N = 2, G2(s1, s2) =

[ s1 s2
s∗
2 −s∗

1

]
= [x1,x2],

then for N = 2n (N ≥ 4) [16]

GN (s) =
 GN

2

(
s1, . . . , sN

2

)
GN

2

(
sN

2 +1, . . . , sN

)
GN

2

(
s1, . . . , sN

2

)
Θ −GN

2

(
sN

2 +1, . . . , sN

)
Θ


 ,

where Θ = diag
(
{(−1)k−1}N/2

k=1

)
and s =

[s1, . . . , sj , . . . , sN ]T are the information symbols drawn
from a PSK/QAM modulation alphabet. The channel is
assumed to be constant for the whole code block.

1) Equivalent channel representation: Before analyzing the
performance metric, which is the average normalized MSE,
let us introduce the equivalent channel representation. First
of all, let us split the vector s into two vectors, so and se.
The elements of s with odd index j are collected in so and
with even index in se, respectively. After some preprocessing
(mainly complex conjugating some elements of the receive
vector y), channel matched filtering, and noise-whitening [16],
[17], the received signal vector ỹ in the equivalent channel
model is given by

ỹ =
[

H′ 0
0 H′

]
︸ ︷︷ ︸

H̃

[
so

se

]
+ ñ (2)

with additive white Gaussian noise (AWGN) vector ñ ∼
CN (0, σ2

nI). The properties of the equivalent N/2×N/2 channel
H′ are discussed in the following The Gram of the equivalent
N/2 × N/2 channel H′ in (2) has the following eigenvalue
decomposition H′HH′ = VH′SVH

H′ .

In the following, we present the eigenvalues of H′HH′ for
the case of N = 4 in order to gain more insight into the
structure of the eigenvalues. Afterward, the structure of the
eigenvalues for the general case is given.

Example II.1: In the case of N = 4 transmit antennas H′ is

given by H′ =
[

µ1 iµ1
µ2 −iµ2

]
, with µ1 =

√
λ+β

2 , µ2 =
√

λ−β
2 ,

λ =
∑M

i=1

∑N
j=1 |hji|2 and β =

∑M
i=1 2Im(h∗

1ih3i + h∗
4ih2i),

where hji is the channel gain from the j-th transmitter (1 ≤

j ≤ N) to the i-th receiver (1 ≤ i ≤ M) of the actual quasi-
static block flat fading MIMO channel [17]. Furthermore, VH′

and S
1
2 are given as

VH′ =
1√
2

[
1 1

−i i

]
,S

1
2 =

√
2
[

µ1 0
0 µ2

]
.

Lemma 1 For any N and M , the eigenvalues µ2
k of 2

N S
depend on the actual channel H and on the transmit strategy
Q by

µ2
k = tr

(
HUQΛQ

1/2Ak
NΛQ

1/2UH
QHH

)
. (3)

where the matrices Ak
N are given in the Appendix.

Proof: We omit the proof because it follows the same
line of arguments as the proof given in [16, Lemma 4.2] and
replacing H by H = HUQΛQ

1
2 .

C. Normalized average MSE

Since a MMSE receiver is applied, the performance metric
introduced is the average normalized MMSE. We follow the
definition and derivation of the normalized MSE in [18].The
linear MMSE receiver computes the data estimate from the
received signal vector in the equivalent channel model (1)

x̂ = ρH̃H
(
I + ρH̃H̃H

)−1

ỹ.

The covariance matrix of the estimation error ε is given as

Kε = I − ρH̃H
(
ρH̃H̃H + I

)−1

H̃. (4)

From (4), it follows the average normalized MSE as

MSE = Etr(Kε) = N − Etr
(

ρH̃H̃H
[
I + ρH̃H̃

H
]−1
)

.

(5)

The last term in (5) can be rewritten and we obtain for the
average MSE1 as a function of Rt, and the transmit strategy
Q

MSE(Rt,Q) = N − M + Etr
([

I + ρH̃H̃
H
]−1)

(6)

=
N∑

k=1

E

[
1

1 + ρµ2
k(Rt,Q)

]
. (7)

The eigenvalues µ2
k(·) are defined and explained in [16].

III. OPTIMAL TRANSMIT STRATEGY

Having analyzed the general properties of the MSE in the
last section, in the following, we will solve the optimization
problem

min
Q�0,trQ≤P

MSE(Rt,Q). (8)

1The MSE depends on the channel matrix H. The average is computed
with respect to the random part W of the real channel realization.



We first rewrite (7) as

MSE(Rt,Q) =
N∑

k=1

E

[∫ ∞

0

e−t(1+ρµ2
k(Rt,Q)) dt

]

=
N∑

k=1

∫ ∞

0

e−t
E

[
e−tρµ2

k(Rt,Q)
]

dt

by using the identity (1 + x)−1 =
∫∞
0

e−t(1+x) dt. Using the
probability density function of the channel

p(H) =
1

πNM det(Rt)M
exp

(−tr
(
HR−1

t HH
))

and define F = Q1/2 = UQΛQ
1/2 we have

E

[
e−tρµ2

k(Rt,F)
]

=
1

det (Rt)
M det

(
tρFAk

NFH + R−1
t

)M
It follows that

MSE(Rt,F) =
N∑

k=1

∞∫
0

det (Rt)
−M exp(−t) dt

det
(
tρFAk

NFH + R−1
t

)M .

Using the eigenvalue decomposition of Rt results in

MSE(Rt,F) =
N∑

k=1

∞∫
0

det (ΛR)−M exp(−t) dt

det
(
tρUH

R FAk
NFHUR + Λ−1

R

)M .

Defining Q̃1/2 = UH
R F = UH

R Q1/2 and using it in
tr(Q) ≤ P from (8) results in tr(Q̃) ≤ P which is minimized
by choosing UQ = UR. Thus, we have

MSE(Rt,F) =
N∑

k=1

∞∫
0

exp(−t)

det
(
tρΛRΛQAk

N + I
)M dt. (9)

Lemma 2 Let D be a diagonal matrix with arbitrary entries.
Then the following statement holds

det
(

tρDAk
N +

1
a
I
)

= det
(

tρDAk′
N +

1
a
I
)

,

for 1 ≤ k, k′ ≤ N . Further, since the matrices Ak
N have rank

two the only eigenvalues of DAk
N , ∀k, 1 ≤ k ≤ N

2 , unequal
to zero are given as

2
N

N
2∑

k=1

d2k−1, and
2
N

N
2∑

k=1

d2k.

Proof: The proof is given in [19].
Thus, the eigenvalues of ΛRΛQAk

N , ∀k, 1 ≤ k ≤ N
2 ,

unequal to zero are given as

ν1 =
2
N

N
2∑

k=1

p2k−1r2k−1, and ν2 =
2
N

N
2∑

k=1

p2kr2k.

Therefore, we can rewrite (9) as

MSE = N

∞∫
0

exp(−t)

(tρν1 + 1)M (tρν2 + 1)M
dt. (10)

Theorem 1: The optimal transmit precoding activates at most
two eigen-modes at all SNRs. Specifically, let the eigenvalues
of the transmit correlation matrix be decreasingly ordered as
r1 ≥ r2 ≥ · · · ≥ rN ≥ 0. Then it is optimal to transmit into
at most two eigen-directions which correspond to r1 and r2.

Proof: With
∑N/2

k=1 p2k−1 = Po,
∑N/2

k=1 p2k = Pe =
P −Po and

∑N/2

k=1 αk = 1,
∑N/2

k=1 βk = 1, we can rewrite (10)
as

MSE =

∞∫
0

N exp(−t)(
tρPo

2
N

∑N/2

k=1 αkr2k−1 + 1
)M

× 1(
tρ(P − Po) 2

N

∑N/2

k=1 βkr2k + 1
)M

dt (11)

Eq. (11) can be interpreted as follows. Given the total power
constraint of P we allocate a power of Po and Pe = P −Po to
the odd and even eigenvalues of Rt, respectively. The weights
αk and βk thereby determine, how much power is allocated to
each eigenvalue. The optimal weights αk and βk are obtained
by using the following lemma

Lemma 3 Let µi (i = 1 . . . n) be nonnegative, decreasingly
ordered numbers (µi > µj for i < j). Then the weighted sum
s =

∑n
i=1 aiµi, where ai ≥ 0 and

∑
i ai = 1, is maximized

when a1 = 1.

Proof: Given any set of weights that contains more than 1
non-zero value, say ak and aj , then the sum s = akµk +ajµj

can always be increased by creating new weights as ã1 =
ak + aj and other ãi equal to zero, which leads to the new
sum s̃ = (ak + aj)µ1 > akµk + ajµj = s.

If there are multiple maximum values of µi, the optimal
weights can be distributed equally among these values.

Using Lemma 3, the optimal weights for (11) are α1 =
β1 = 1 and αi = βi = 0, 2 ≤ i ≤ N/2, i.e. only the two
largest eigenvalues are supported, independent of the SNR.
This concludes the proof.
Using this in (11) gives

MSE = N

∞∫
0

exp(−t)(
tρPo

2
N r1 + 1

)M (
tρ(P − Po) 2

N r2 + 1
)M dt

= NEt

[
1(

tρPo
2
N r1 + 1

)M (
tρPe

2
N r2 + 1

)M
]

, (12)

with the pdf of the random variable t given as pt(t) =
exp(−t). In the next step, we characterize the optimal power
allocation in terms of necessary and sufficient optimality
conditions. The convex optimization problem is then

min
ΛQ

NEt

[
2∏

k=1

1(
tρpk

2
N rk + 1

)M
]

subject to
2∑

k=1

pk ≤ P and pk ≥ 0, k = 1, 2.

The Lagrangian function for the above problem is given by



L(ΛQ, µ,v) =NEt

[
2∏

k=1

1(
tρpk

2
N rk + 1

)M
]

+ µ

(
2∑

k=1

pk − P

)
−

2∑
k=1

vkpk.

The necessary and sufficient optimality conditions (or
Karush-Kuhn-Tucker (KKT) conditions [20]) are obtained by
setting the derivative of L wrt pk to zero. For k = 1 and
k = 2, these conditions are given by

Et

[
−NMtρ 2

N r1(
tρPo

2
N r1 + 1

)M+1 (
tρ(P − Po) 2

N r2 + 1
)M
]

= v1 − µ (13)

and

Et

[
−NMtρ 2

N r2(
tρPo

2
N r1 + 1

)M (
tρ(P − Po) 2

N r2 + 1
)M+1

]

= v2 − µ. (14)

From these conditions we observe the following behavior
of the optimal power allocation for asymptotically high SNR
values and for small SNR values.

Corollary 1: Let the eigenvalues of the transmit correlation
matrix be ordered in descending order r1 ≥ r2 ≥ · · · ≥
rN ≥ 0. For asymptotically high SNR values, the optimal
power allocation is to allocate equal power to the two largest
eigenvalues r1 and r2.

Proof: Suppose that P �
o (0 < P �

o < P ) is the optimal
power as ρ → ∞. Break the integral in (12) into two integrals
as follows ∫ ∞

0

[...]dt =
∫ K/ρ

0

[...]dt +
∫ ∞

K/ρ

[...]dt

where K is a constant chosen such that

KP �
o

2
N

r1 � 1 and K(P − P �
o )

2
N

r2 � 1.

Then, as ρ → ∞, the expression in the denominator of the
second integral can be approximated as(

t2KP �
o

2
N

r1K(P − P �
o )

2
N

r2

)M

while the first integral approaches 0. Thus minimizing the
MSE is equivalent to maximizing the product P �

o (P − P �
o ),

which leads to P �
o = P/2.

Theorem 2: Let the eigenvalues of the transmit correlation
matrix be ordered in descending order r1 ≥ r2 ≥ . . . ,≥ rN ≥
0. The necessary and sufficient condition for the optimality of
single-mode beamforming, i.e. p1 = Po = P , p2 = p3 =
· · · = pN = 0 is given by

Et

[
tρ∗ 2

N r1(
tρ∗P 2

N r1 + 1
)M+1

]
≥ Et

[
tρ∗ 2

N r2(
tρ∗P 2

N r1 + 1
)M
]

(15)

Proof: The optimal transmit strategy if only one direction
is supported, i.e. the SNR ρ ≤ ρ∗, is to allocate the complete
power in direction of the largest eigenvalue r1, i.e. p1 = P0 =
P . The KKT conditions require that vkpk = 0 at the optimal
values, thus v1 = 0 and v2 ≥ 0. Coupled with (13) and (14),
we obtain eq. (15).

Now define the following function γ(ρ) given as

γ(ρ) = Et

[
tρ∗ 2

N r2(
tρ∗P 2

N r1 + 1
)M
]
− Et

[
tρ∗ 2

N r1(
tρ∗P 2

N r1 + 1
)M+1

]
.

As long as γ(ρ) ≤ 0, from Theorem 2 it follows that
single-mode beamforming is optimal. Interestingly, the above
expression can be evaluated in closed form resulting in

γ(ρ) =e
1

2
N

ρr1P

(
2
N

ρr1P

)−M
[

1
2
N ρr1P

Γ
(
−M,

1
2
N ρr1P

)

+
(

2
N

ρr2P

)
Γ
(

2 − M,
1

2
N ρr1P

)

− Γ
(

1 − M,
1

2
N ρr1P

)(
r2

r1
− 1
)]

, (16)

where Γ(a, x) is the incomplete Gamma function [21]. In
the following section, the theoretical results obtained are
illustrated by numerical simulations.

IV. SIMULATIONS

In Fig. 1, the MSE for two different correlation scenar-
ios and power allocation strategies for a 4 × 1 system is
depicted. From the figure, we observe that correlation has
a negative impact on the performance in case equal power
allocation is applied. The performance is improved for low to
average SNRs, if single-mode beamforming, i.e. allocation the
full power to the largest eigenvalue, is applied. Single-mode
beamforming is optimal up to −1 dB in the given scenario.
For higher SNRs, the optimal power allocation strategy is to
support two eigenvalues.
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r=[1,1,1,1] , equal power allocation (PA)
r=[2.4217,1.1491,0.3450,0.0842], equal PA
r=[2.4217,1.1491,0.3450,0.0842], single−mode BF
r=[2.4217,1.1491,0.3450,0.0842], optimal PA

Fig. 1. MSE as a function of the SNR: Uncorrelated case with equal
power allocation (PA), and the correlated case with equal PA, single-mode
beamforming (BF) and optimal PA.

In Fig. 2, the optimal power allocation for a 4 × 1 system
is illustrated. We observe that at low SNRs up to ρ∗, the



complete power is allocated to the largest eigenvalue, i.e.
single-mode beamforming is optimal. In addition to the power
allocation, γ given in (16) is depicted. In Fig. 2, it can be
observed that the null of the function γ corresponds with
the occurrence of the power in the direction of the second
largest eigenvalue. Furthermore, in the SNR range considered
here, the optimal power allocation is still different from
equal power allocation along the eigenvalues. Nevertheless,
the optimal power allocation converges slowly towards equal
power allocation.

V. CONCLUSION

In conclusion, we studied the optimal linear precoder for a
wireless MIMO system with transmitter correlation applying
a QSTBC at the transmitter and a linear MMSE detector at
the receiver. We showed that it is optimal to transmit into
the direction of the eigenvectors of the transmit correlation
matrix. The optimal power allocation is characterized using
the necessary and sufficient optimality conditions. It turns out
that for high SNRs, only the two largest eigenvalues of the
correlation matrix are supported, which is a surprising result.
We showed that for small SNR values, the optimal precoding
matrix has rank one, i.e. single mode beamforming is optimal.
A closed form expression characterizing the SNR range for
optimal single-mode beamforming is derived.
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Fig. 2. Optimal power allocation and single-mode beamforming region with
Rt with eigenvalues r1 = 2.4217 and r2 = 1.1491.

APPENDIX

The matrices Ak
N , 1 ≤ k ≤ N are idempotent (the

eigenvalues consist of ones and zeros) with rank two and
N∑

k=1

Ak
N = IN . They are obtained recursively as follows

Aj
N =

1
2


 Aj′

N
2

−Bj′
N
2

Bj′
N
2

Aj′
N
2


 ,Aj+1

N =
1
2


 Aj′

N
2

Bj′
N
2

−Bj′
N
2

Aj′
N
2




with j = 1, 3 . . . , N/2−1 and N = 2n,n ≥ 2 , Bj′
N = iΘNAj′

N

and j′ = j+1
2 . Furthermore Ak

N = A
N/2+k
N , 1 ≤ k ≤ N/2 and

A1
2 = I2. In addition to that, it holds that ΘNAj

NΘN = Aj
N ,

i.e. ΘN and Aj
N commutate and Aj

NAk
N = 0, j 	= k i.e. are

mutually orthogonal.

REFERENCES

[1] E. Telatar, “Capacity of multi-antenna Gaussian channels,” European
Trans. on Telecomm. ETT, vol. 10, no. 6, pp. 585–596, November 1999.

[2] E. Visotsky and U. Madhow, “Space-time precoding with imperfect
feedback,” IEEE Trans. on Info. Theory, vol. 47, no. 6, pp. 2632 –
2639, Sept. 2001.

[3] A. Narula, M.J. Lopez, M.D. Trott, and G.W. Wornell, “Efficient use
of side information in multiple-antenna data transmission over fading
channels,” IEEE Journal on Selec. Areas in Comm., vol. 16, no. 8, pp.
1423 – 1436, October 1998.

[4] S. Jafar and A. Goldsmith, “Transmitter optimization and optimality
of beamforming for multiple antenna systems with imperfect feedback,”
IEEE Transactions on Wireless Communications, vol. 3, no. 4, pp. 1165
– 1175, July 2004.

[5] S. Zhou and G.B. Giannakis, “Optimal transmitter eigen-beamforming
and space-time block coding based on channel mean feedback,” IEEE
Trans. on Signal Processing, vol. 50, no. 10, pp. 2599–2613, October
2002.

[6] S. Simon and A. Moustakas, “Optimality of beamforming in multiple
transmitter multiple receiver communication systems with partial chan-
nel knowledge,” Proc. of DIMACS Conference on Signal Processing for
Wireless Transmission, 2002.

[7] E. A. Jorswieck and H. Boche, “Channel capacity and capacity-range of
beamforming in MIMO wireless systems under correlated fading with
covariance feedback,” IEEE Trans. on Wireless Communication, vol. 3,
no. 5, pp. 1543–1553, Sept. 2004.

[8] C. Brunner, W. Utschick, and J. A. Nossek, “Exploiting the short-term
and long-term channel properties in space and time: eigenbeamforming
concepts for the bs in wcdma,” European Trans. on Telecommunications,
vol. 12, no. 5, pp. 365–378, 2001.

[9] M. Kiessling, “Unifying analysis of ergodic MIMO capacity in corre-
lated rayleigh fading environments,” Europ. Trans. on Telecommunica-
tions, vol. 16, no. 1, pp. 17–35, Jan. 2005.

[10] T. Weber, A. Sklavos, and M. Meurer, “Imperfect channel-state infor-
mation in MIMO transmission,” IEEE Trans. on Communications, vol.
54, no. 3, pp. 543–552, March 2006.
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