
Topic 7: Random Processes

• Definition, discrete and continuous processes

• Specifying random processes

– Joint cdf’s or pdf’s

– Mean, auto-covariance, auto-correlation

– Cross-covariance, cross-correlation

• Stationary processes and ergodicity
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Random processes

• A random process, also called a stochastic process, is a family of random

variables, indexed by a parameter t from an indexing set T . For each

experiment outcome ω ∈ Ω, we assign a function X that depends on t

X(t, ω) t ∈ T , ω ∈ Ω

– t is typically time, but can also be a spatial dimension

– t can be discrete or continuous

– The range of t can be finite, but more often is infinite, which means

the process contains an infinite number of random variables.

• Examples:

– The wireless signal received by a cell phone over time

– The daily stock price

– The number of packets arriving at a router in 1-second intervals

– The image intensity over 1cm2 regions
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• We are interested in specifying the joint behavior of the random

variables within a family, or the behavior of a process. This joint

behavior helps in studying

– The dependencies among the random variables of the process

(e.g. for prediction)

– Long-term averages

– Extreme or boundary events (e.g. outage)

– Estimation/detection of a signal corrupted by noise
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Two ways of viewing a random process

Consider a process X(t, ω)

• At a fixed t, X(t, ω) is a random variable and is called a time sample.

• For a fixed ω, X(t, ω) is a deterministic function of t and is called a

realization (or a sample path or sample function)

⇒ ω induces the randomness in X(t, ω). In the subsequent notation, ω is

implicitly implied and therefore is usually suppressed.

• When t comes from a countable set, the process is discrete-time. We

then usually use n to denote the time index instead and write the

process as X(n, ω), or just Xn, n ∈ Z.

– For each n, Xn is a r.v., which can be continuous, discrete, or mixed.

– Examples: Xn = Zn, n ≥ 1, Z ∼ U [0, 1].

Others: sending bits over a noisy channel, sampling of thermal noise.

• When t comes from an uncountably infinite set, the process is

continuous-time. We then often denote the random process as X(t). At

each t, X(t) is a random variable.

– Examples: X(t) = cos(2πft + θ), θ ∼ U [−π, π].
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Specifying a random process

• A random process can be completely specified by the collection of joint

cdf among the random variables

{X(t1), X(t2), . . . , X(tn)}

for any set of sample times {t1, t2, . . . , tn} and any order n.

Denote Xk = X(tk),

– If the process is continuous-valued, then it can also be specified by

the collection of joint pdf

fX1,...,Xn
(x1, . . . , xn)

– If the process is discrete-valued, then a collection of joint pmf can

be used

pX1,...,Xn
(x1, . . . , xn) = P [X1 = x1, . . . , Xn = xn]

• This method requires specifying a vast collection of joint cdf’s or pdf’s,

but works well for some important and useful models of random

processes.
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Mean, auto-covariance, and auto-correlation functions

The moments of time samples of a random process can be used to partly

specify the process.

• Mean function:

mX(t) = E[X(t)] =

∫

∞

−∞

x fX(t)(x) dx

mX(t) is a function of time. It specifies the average behavior (or the

trend in the behavior) of X(t) over time.

• Auto-correlation function: RX(t1, t2) is defined as the correlation

between the two time samples Xt1 = X(t1) and Xt2 = X(t2)

RX(t1, t2) = E[Xt1Xt2 ]

Properties:

– In general, RX(t1, t2) depends on both t1 and t2.

– For real processes, RX(t1, t2) is symmetric

RX(t1, t2) = RX(t2, t1)
ES150 – Harvard SEAS 6



– For any t, t1 and t2

RX(t, t) = E[X2
t ] ≥ 0

|RX(t1, t2)| ≤
√

E[X2
t1

]E[X2
t2

]

Processes with E[X2
t ] < ∞ for all t is called second-order.

• Auto-covariance function: Cx(t1, t2) is defined as the covariance

between the two time samples X(t1) and X(t2)

CX(t1, t2) = E [{Xt1 − mX(t1)}{Xt2 − mX(t2)}]

= RX(t1, t2) − mX(t1)mX(t2)

– The variance of X(t) can be obtained as

var(Xt) = E[{X(t) − mX(t)}2] = CX(t, t)

var(Xt) is a function of time and is always non-negative.

– The correlation coefficient function:

ρX(t1, t2) =
CX(t1, t2)

√

CX(t1, t1)
√

CX(t2, t2)

ρX(t1, t2) is a function of times t1 and t2. It is also symmetric.
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• Examples: Find the mean and autocorrelation functions of the

following processes:

a) X(t) = cos(2πft + θ) , θ ∼ U [−π, π]

b) Xn = Z1 + . . . + Zn , n = 1, 2, . . .

where Zi are i.i.d. with zero mean and variance σ2.
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Multiple random processes:

Cross-covariance and cross-correlation functions

For multiple random processes:

• Their joint behavior is completely specified by the joint distributions

for all combinations of their time samples.

Some simpler functions can be used to partially specify the joint behavior.

Consider two random processes X(t) and Y (t).

• Cross-correlation function:

RX,Y (t1, t2) = E[Xt1Yt2 ]

– If RX,Y (t1, t2) = 0 for all t1 and t2, processes X(t) and Y (t) are

orthogonal.

– Unlike the auto-correlation function, the cross-correlation function

is not necessarily symmetric.

RX,Y (t1, t2) 6= RX,Y (t2, t1)
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• Cross-covariance function:

CX,Y (t1, t2) = E[{Xt1 − mX(t1)}{Yt2 − mY (t2)}]

= RX,Y (t1, t2) − mX(t1)mY (t2)

– If CX,Y (t1, t2) = 0 for all t1 and t2, processes X(t) and Y (t) are

uncorrelated.

• Two processes X(t) and Y (t) are independent if any two vectors of

time samples, one from each process, are independent.

– If X(t) and Y (t) are independent then they are uncorrelated:

CX,Y (t1, t2) = 0 ∀ t1, t2 (the reverse is not always true).

• Example: Signal plus noise

Y (t) = X(t) + N(t)

where X(t) and N(t) are independent processes.
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Stationary random processes

In many random processes, the statistics do not change with time. The

behavior is time-invariant, even though the process is random. These are

called stationary processes.

• Strict-sense stationarity:

– A process is nth order stationary if the joint distribution of any set

of n time samples is independent of the placement of the time origin.

[X(t1), . . . , X(tn)] ∼ [X(t1 + τ), . . . , X(tn + τ)] ∀τ

For a discrete process:

[X1, . . . , Xn] ∼ [X1+m, . . . , Xn+m] ∀m

– A process that is nth order stationary for every integer n > 0 is said

to be strictly stationary, or just stationary for short.

– Example: The i.i.d. random process is stationary.

• Strict stationarity is a strong requirement.
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– First-order stationary processes: fX(t)(x) = fX(x) for all t. Thus

mX(t) = m ∀t

var(Xt) = σ2 ∀t

– Second-order stationary processes:

fX(t1),X(t2)(x1, x2) = fX(t1+τ),X(t2+τ)(x1, x2) ∀τ

The second-order joint pdf (pmf) depends only on the time

difference t2 − t1. This implies

RX(t1, t2) = RX(t2 − t1)

CX(t1, t2) = CX(t2 − t1)
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Wide-sense stationary random processes

• X(t) is wide-sense stationary (WSS) if the following two properties

both hold:

mX(t) = m ∀t

RX(t1, t2) = RX(t2 − t1) ∀t1, t2

– WSS is a much more relaxed condition than strict-sense stationarity.

– All stationary random processes are WSS. A WSS process is not

always strictly stationary.

– Example: Sequence of independent r.v.’s

Xn = ±1 with probability 1
2 for n even

Xn = −1/3 and 3 with probabilities 9
10 and 1

10 for n odd

• Properties of a WSS process:

– RX(0) is the average power of the process

RX(0) = E[X(t)2] ≥ 0

RX(0) thus is always positive.
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– RX(τ) is an even function

RX(τ) = RX(−τ)

– RX(τ) is maximum at τ = 0

|RX(τ)| ≤ RX(0)

– If RX(0) = RX(T ) then RX(τ) is periodic with period T

if RX(0) = RX(T ) then RX(τ) = RX(τ + T ) ∀τ

– RX(τ) measures the rate of change of the process

P [|X(t + τ) − X(t)| > ε] ≤
2 (RX(0) − RX(τ))

ε2

• If a Gaussian process is WSS, then it is also strictly stationary.

– A WWS Gaussian process is completely specified by the constant

mean m and covariance CX(τ).

• WSS processes play a crucial role in linear time-invariant systems.
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Cyclostationary random processes

• Many processes involves the repetition of a procedure with period T.

• A random process is cyclostationary if the joint distribution of any set

of samples is invariant over a time shift of mT (m is an integer)

[X(t1), . . . , X(tn)] ∼ [X(t1 + mT ), . . . , X(tn + mT )] ∀m, n, t1, . . . , tn

• A process is wide-sense cyclostationary if for all integer m

mX(τ + mT ) = mX(τ)

RX(t1 + mT, t2 + mT ) = RX(t1, t2)

– If X(t) is WSS, then it is also wide-sense cyclostationary.

• We can obtain a stationary process Xs(t) from a cyclostationary

process X(t) as

Xs(t) = X(t + θ) , θ ∼ U [0, T ]

– If X(t) is wide-sense cyclostationary then Xs(t) is WSS.
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Time averages and ergodicity

• Sometimes we need to estimate the parameters of a random process

through measurement.

• A quantity obtainable from measurements is the ensemble average. For

example, an estimate of the mean is

m̂X(t) =
1

N

N
∑

i=1

X(t, ωi)

where ωi is the ith outcome of the underlying random experiment.

– In general, since mX(t) is a function of time, we need to perform N

repetitions of the experiment at each time t to estimate mX(t).

• If the process is stationary, however, then mX(t) = m for all t. Then

we may ask if m can be estimated based on the realization (over time)

of a single outcome ω alone.

• We define the time average over an interval 2T of a single realization as

〈X(t)〉T =
1

2T

∫ T

−T

X(t, ω) dt
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Question: When does the time average converge to the ensemble

average?

• Example 1: If Xn = X(n, ω) is a stationary, i.i.d. discrete-time random

process with mean E[Xn] = m, then by the strong LLN

1

N

N
∑

i=1

Xi
a.s.
−→ m as N → ∞

=⇒ Convergence.

• Example 2: X(t) = A for all t, where A is a zero-mean random

variable. Then X(t) is stationary and mX = E[A] = 0 for all t, but

〈X(t)〉T =
1

2T

∫ T

−T

A dt = A

=⇒ No convergence.

• Ergodicity let us characterize this convergence for a larger class of

random processes.
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Ergodicity of a WSS process

• Consider a WSS random process X(t) with mean m. X(t) is

mean-ergodic if

〈X(t)〉T −→ m as T → ∞

Notes:

– Because of stationarity, the expected value of 〈X(t)〉T is

E [〈X(t)〉T ] = E

[

1

2T

∫ T

−T

X(t) dt

]

=
1

2T

∫ T

−T

E[X(t)] dt = m

– Mean-ergodic definition therefore implies that 〈X(t)〉T approaches

its mean as T → ∞.

• Mean-ergodic theorem: The WSS process X(t) is mean-ergodic in the

mean-square sense, that is

lim
T→∞

E
[

(〈X(t)〉T − m)
2
]

= 0

if and only if its covariance satisfies

lim
T→∞

1

2T

∫ T

−T

(

1 −
|u|

2T

)

CX(u) du = 0
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