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Problem Background 

Data structures are used to organize and store information in order to efficiently interact 
with the data. Most data structures are compared by the efficiency of the operations that can be 
performed. What is the theoretical time complexity to insert an element? Delete an element? Find 
an element? Merge two structures? In order to complete these operations effectively, additional 
space may be used. Since the focus of these structures is the speed of the operations that can be 
performed, this space is considered “free”. But is it really? 
 

There continues to be a massive increase both in size and availability of large data sets 
that are processed by various applications. Massive data sets present a challenge to balance 
storage, organization and accessibility. The underlying problem is: how can I compress the data 
but still query it quickly?  
 

Lossless data compression algorithms successfully compress data and allow it to be 
perfectly reconstructed from the compressed data. However, in order to interact with the data, it 
must first be decompressed. What if there were a way to store the data in a compressed format, 
and be able to interact with it, without first having to decompress it? Succinct data structures make 
this possible. 
 

Succinct data structures require the amount of space that is close to the 
information-theoretic lower bound [A]. That is, there is very little “extra space”. As long as the data 
can be used efficiently, less space is desirable because less space implies faster and cheaper 
algorithms. For example, they allow a data representation which would otherwise need to be 
written to disk to instead be fit into main memory which improves access time. There exist a range 
of real-world applications that can utilize this space-efficient storage method, most centered around 
information retrieval: 
 
 

Search Engines- Search engines can index billions of web pages and respond to queries 
about those pages in real-time. Therefore, it is crucial to decrease the space used by their 
index while still allowing efficient queries. 

 
Mobile applications - Mobile applications have a limited amount of storage available on 
the device and efficient storage allows for added functionality. 



 
DNA representation - Medical databases are massive and contain sequences that contain 
patterns and need to be queried quickly. One can successfully represent DNA in a succinct 
manner. 
 
Streaming environments - In a streaming environment, the next frame(s) need to be 
accessed quickly and efficiently. The smaller the size of the content, the faster it can be 
processed, and at a smaller cost. 

 
 
Problem Statement 

We analyze the effectiveness of succinct trees in theory and then compare those major 
techniques for representing trees succinctly in practice. The pointer form of an n-node tree requires 

bits (see Labeled Trees section). However, according to Information Theory [A,B] only(n log n)Ω  
bits are required to distinguish n nodes.  A lot of research [1, 2, 4, 5, 6] has focusedn (log n)2 − θ  

on succinct representations which require just 2n + o(n) bits while still being able to implement 
sophisticated operations in constant time. There are three methods for implementing succinct 
trees: balanced parentheses (BP), depth first unary degree sequence (DFUDS) and level-ordered 
unary degree sequence (LOUDS).  
 

For each method, we will (1) provide a high level description, (2) outline the lower level 
details related to bit storage and queries, (3) detail the operations available on this representation, 
and (4) illustrate the theoretical time complexities of operations. 
 

Only after a strong foundation is achieved will we then compare the effectiveness of these 
storage methods in practice. These results are based on the results of [6]. 
 
What does it mean to be succinct?  
 

A succinct representation of data is one whose size is roughly the information-theoretic 
lower bound [A,B]. That is, there is little “extra space”. There are three categories for succinct data 
structures: 
 
Let OPT refer to the optimum number of bits. See [7] for reference about Big-O notation. 
 
Implicit: OPT + o(1) bits. The constant factor is added to round up the number of bits. For an 
implicit data structure, the structural information is implicit in the way that the data is stored. An 
example of this is a an array since the length is the only piece of overhead not implicit to the 
structure. Generally, it is extremely challenging to achieve an implicit data structure that contains a 
robust suite of operations that run in constant time. 
 



Compact: O(OPT) bits. This is easier to achieve, and acts more as a warmup for succinct data 
structures.  
 
Succinct: OPT + o(OPT) bits. This is what we will focus on.  
 
Labeled Trees 
First let’s examine the space complexity of trees in pointer form.  
 

 
Above is an n-node (n = 12) tree in pointer form. A general tree of n nodes requires (nw)O

bits of space where is the bit length of a machine pointer. Therefore, the spacew ≥ log n2   
complexity is . Now let’s examine an n-node labeled tree (trie) which represents the(n log n)O  
following dictionary, D, where D contains strings in the alphabet σ: 

 D =  {ab (x7), bab (x2), bca (x1), cab (x4), cac (x1), cbac (x6), cbba (x2) }       
a...z}σ = {  

 
 

In this case, each child of a node is associated with a distinct label in a range [1, σ]. A 
general tree of n nodes requires bits of space where is the bit length of a machine(nw)O w ≥ log σ2   
pointer. In this case the tree is compressed, which means that chains of redundant nodes (nodes 
with only one child) are joined. For example, normally the leftmost edge, ab, would be two separate 
edges, a and b, joined in sequence. The values at the leaves represent the number of strings that 
end in that sequence. For example, in the above word list, the word “cab” appears 4 times. 

 



 
Succinct Representation of Labeled Trees 
 
Balanced Parentheses (BP) 
 
The balanced parentheses representation was first advocated by Jacobson in 1989 [1] and then 
expanded upon by Munro and Raman in 2001 [2]. The premise is that while the tree is traversed in 
depth-first preorder traversal, an open parenthesis is written when a node is reached the first time, 
and a closing parenthesis is written when that node is reached again. This results in a sequence of 
2n balanced parentheses, such that each node is represented by a pair of matching parentheses.  
 

 

 
 
A node is identified by its opening parenthesis and a subtree is the collection of parentheses 
contained by a node's opening and closing parentheses. For a nice visualization of tree traversals, 
visit: 
https://www.khanacademy.org/computer-programming/depth-first-traversals-of-binary-trees/93402
4358  
 
Basic Operations: 

These are core operations which are used to perform tree navigation operations. Let S be 
the string of parentheses. 
 

https://www.khanacademy.org/computer-programming/depth-first-traversals-of-binary-trees/934024358
https://www.khanacademy.org/computer-programming/depth-first-traversals-of-binary-trees/934024358


findclose(S, i): return the position of “)” matching with “(“ at S[i]. This finds the index in S, 
of the closing parenthesis for a node whose opening parenthesis is at position i. 

findopen(S, i): return the position of “(“ matching with “)” at S[i]. This finds the index in S, of 
the opening parenthesis for a node whose closing parenthesis is at position i. 

enclose(S, i): return the position of “(“ which encloses “(“ at S[i], This finds the index in S, 
of an opening parenthesis for the parent of a node whose opening parenthesis is at position i. 
 
 

 
 

rankp(S, i):  return the frequency of pattern p in S[1..i]. For example, rank((S, 5) returns the 
number of open parentheses in the first 5 characters in S, which, in the above picture, is 4.  

selectp(S, i): return the position of the ith occurrence of pattern p in S. For example, 
select((S, 5) returns the index where the 5th open parenthesis is found, which, in the above picture, 
is 7. 
 
Tree Navigation Operations: 

parent(v) = enclose(S,v). The parent of a node is just the position of the tightest opening 
parenthesis that encloses v.  

firstchild(v) = v+1. The first child of a node is the opening parenthesis directly following v. 
sibling(v) = findclose(S,v) + 1. The right sibling of a node is the node directly after the 

closing parenthesis of node v. 
lastchild(v) = findopen(S, findclose(S,v) - 1). findclose(S,v) - 1 finds the closing 

parenthesis for the last child of v. Calling findopen on this returns the index (opening parenthesis) 
for that node.  

subtreesize(v) = (findclose(S,v) - v + 1)/2. The subtree is calculated by finding the 
bounding parenthesis, adjusting it by v (the offset of the opening parenthesis) and then dividing by 
2 since 2n parentheses represent n nodes.  

degree(v) = iteratively call findclose on all the children. The time complexity of this 
operation is relative to the number of children that v has. 

depth(v) = rank((S, i) - rank)(S, i). The depth of a node is the number of opening 
parentheses minus the number of closed ones. You can think of it as each open parenthesis is a 
level down the tree and each closed one is a level up. 



lca(v,w) = return the lowest common ancestor of v and w which is furthest from the root. 
This is calculated using the largest depth that is less than (or equal to) the depth of the two 
children. Research Range Minimum Query (RMQ) [3] for more information about how to do this. 
 
If rankp(S, i) and selectp(S, i) can be calculated in constant time [O(1)] then each of the operations 
(except for degree) can also be calculated in constant time since they depend on finding the rank 
and select of indices. See the appendix [D] for a description of how rank and select are calculated 
in constant time while maintaining o(n) space.  
 
Balanced Parenthesis Overview: 

BP contains more supported operations (in constant time) including calculating the subtree 
size, the lowest common ancestor and level ancestors. However, degree and ith child are difficult to 
implement. Additionally, the more supported operations that exist, the more index space is 
required. In theory o(n) sized indices is ok but in practice this cannot be ignored. 
 
Depth-First Unary Degree Sequence (DFUDS) 
 

The depth-first unary degree sequence was first advocated by Benoit, Demain, Munro, 
Raman, Raman and Rao in 1999 [5]. The premise is that the tree follows the same traversal as BP. 
However, at each node, i opening parentheses are appended, for i children, and 1 closing 
parenthesis is appended. This results in a sequence of 2n balanced parentheses, such that each 
node is represented by a pair of matching parentheses. A node is identified by the position where 
the parentheses start.  

 

 
Basic Operations: 

These are core operations which are used to perform tree navigation operations. Let S be 
the string of parentheses. 



 
findclose(S, i): return the position of “)” matching with “(“ at S[i]. This finds the index in S, 

of the closing parenthesis for a node whose opening parenthesis is at position i. 
findopen(S, i): return the position of “(“ matching with “)” at S[i]. This finds the index in S, of 

the opening parenthesis for a node whose closing parenthesis is at position i. 
enclose(S, i): return the position of “(“ which encloses “(“ at S[i], This finds the index in S, 

of an opening parenthesis for the parent of a node whose opening parenthesis is at position i. 
rankp(S, i):  return the frequency of pattern p in S[1..i]. For example, rank1(S, 5) returns the 

number of 1s in the first 5 characters in S, which, in the above picture, is 4.  
selectp(S, i): return the position of the ith occurrence of pattern p in S. For example, 

select1(S, 5) returns the index where the 5th 1 is found, which, in the above picture, is 7. 
 
Tree Navigation Operations: 

degree(v) = select)(rank)(v) + 1) - v. Find the index of the node after the number of closing 
parentheses. Then offset this by v to find the acutal degree. 

child(v,i) = findclose(select)(rank)(v) + 1) - i) + 1. Get 1 more than the number of closing 
parentheses, then find the index of that number of closing indices offset by 1. Finding the closing 
parenthesis of that value with give you the node before the ith child so offset by 1. 
 

 
 

parent(v) = select)(rank)(findopen(v-1))) + 1. Similar to child, but just in reverse order. 
subtreesize(v) = (findclose(enclose(v)) - v)/2 + 1. First find the closing parenthesis, then 

divide the difference of the indices by 2 since 2n bits holds n nodes. 
lca(v,w) = return the lowest common ancestor of v and w which is furthest from the root. 

This is calculated using the largest depth that is less than (or equal to) the depth of the two 
children. Research Range Minimum Query (RMQ) [3] for more information about how to do this. 

leaf-rank(v) = rank))(v). Find the number of leaves to the left of leaf v. 
leaf-select(i) =select))(i). Find the ith leaf. 
preorder-rank(v) = rank)(v-1) + 1. Find the preorder rank of v. 
preorder-select(i) = select)(i-1) + 1. Find the node with preorder rank i. 
inorder-rank(v) = leaf-rank(child(v,2) - 1). Find the inorder rank of v. 
inorder-select(i) = parent(leaf-select(i) + 1). Find the node with inorder rank i. 
leftmost-leaf(v) = leaf-select(leaf-rank(v-1) + 1). Find the leftmost leave of node v. 
rightmost-leaf(v) = findclose(enclose(v)). Find the rightmost leave of node v. 

 



If rankp(S, i) and selectp(S, i) can be calculated in constant time [O(1)] then each of the operations 
(except for degree) can also be calculated in constant time since they depend on finding the rank 
and select of indices. See the appendix [D] for a description of how rank and select are calculated 
in constant time while maintaining o(n) space.  
 
Depth-First Unary Degree Sequence Overview: 

DFUDS contains more supported operations (in constant time) including calculating the 
subtree size and the lowest common ancestor. Additionally, child labels are localized in the bit 
string. In fact, this can be further compressed into less than 2n bits (I need to do more research 
needed to defend this). However, depth and level ancestors are challenging to compute.  
 
Level-Ordered Unary Degree Sequence (LOUDS) 
 

The level-ordered unary degree sequence was first advocated by Jacobson in 1989 [1]. 
The premise is that the tree is traversed in level order. At each node, 1d0 is appended to the bit 
string where d is the degree of the node. This results in a sequence of 2n+1 bits (n 1s and n+1 0s). 
A node, n, is identified by the position where nth 1 is in the string.  
 

 
 
 

 
 
 
Basic Operations: 
These are core operations which are used to perform tree navigation operations. Let S be the 
string of bits. 



 
rankp(S, i):  return the frequency of pattern p in S[1..i]. For example, rank1(S, 5) returns the 

number of 1s in the first 5 characters in S, which, in the above picture, is 4.  
selectp(S, i): return the position of the ith occurrence of pattern p in S. For example, 

select1(S, 5) returns the index where the 5th 1 is found, which, in the above picture, is 8. 
 
Tree Navigation Operations: 

firstchild(x) = select0(rank1(S,x)) + 1). rank1(S,x) finds which node x is (in level order) and 
then select0() goes that many 0’s deep in the string, which is the 0 right before the child. The offset 
of 1 ensures that the first child is returned. If this returns 0, then return -1 else return the result. 

lastchild(x) = select0(rank1(S,x) + 1)). rank1(S,x) + 1 goes to the node following x, then 
select0() visits the firstchild of that next node. The offset of -1 ensure we go back in the string 1, 
which will be the last child of x. If this returns 0, then return -1 else return the result. 

rightsibling(x) = if S[x+1] == 0 then -1 else x+1. Siblings are represented as 1’s next to 
each other in the bit string so if a 0 follows x, then it is the last child. Otherwise, the rightsibling is in 
the following index. 

parent(x) = select1(rank0(S,x)). rank0(S,x) finds the number of “clumps”  and then rank1() 
goes to the position of that clump. 

degree(x) = lastchild(x) - firstchild(x) + 1.  
 
If rankp(S, i) and selectp(S, i) can be calculated in constant time [O(1)] then each of the operations 
can also be calculated in constant time since they depend on finding the rank and select of indices. 
See the appendix [D] for a description of how rank and select are calculated in constant time while 
maintaining o(n) space.  
 
Level-Ordered Unary Degree Sequence Overview: 

LOUDS is implemented only by rank and select which makes it easier to implement. 
However, you cannot comput subtree sizes so there is less functionality than can be computed in 
constant time. 

 
 
 
 
 
 
 
 
 
 

Visual Comparisons of Trees 
Below is a visual comparison of the BP, DFUDS and LOUDS sequences for the following tree: 



 
 
Succinct Tree Comparison In Practice 
 
When trees are built using their succinct representation and ran on an Intel(R) Core(™)2 Duo 
processor at 3.16 GHz, with 8GB main memory and 6 MB of cache, running version 2.6.24-24 of 
Linux kernel, the following results are determined: 
 
A variation of the BP representation, which includes a novel data structure to handle core 
operations, called a range min-max ree, offers the best combination of space usage, time 
performance and functionality. 
 
LOUDS can implement a reduced set of navigation operations using just 5% extra space. In fact, it 
is the fastest choice in several operations. 
 
DFUDS and LOUDS provide the best representations for navigating to a child quickly. 
 
Additional Resources 



There are a range of resources available if you’re interested in learning further about the material. 
In addition to the papers that are referenced here, I recommend checking out the following 
resources: 
 
Erik Demaine lectures at MIT (Lectures 16,17, 18): 
https://courses.csail.mit.edu/6.851/spring12/lectures/ 
 
Slide Decks with detailed descriptions: 
https://cs.uwaterloo.ca/~imunro/cs840/Notes16/SuccinctDS.pdf 
https://link.springer.com/chapter/10.1007/3-540-44634-6_39 
http://pages.di.unipi.it/rossano/wp-content/uploads/sites/7/2016/07/Slide.pdf 
 
Succinct Data Structure Library (C++): 
https://github.com/simongog/sdsl-lite 
 
 
Appendix 
 
[A] Information Theoretic Lower Bound 

This examines the lower bounds on a problem or a class of algorithms that can be 
represented as a binary tree where each decision is a branch and edges are straight line iterations. 
Therefore, the possible behaviours form a tree, along which each path the algorithms terminated 
with some output (at the leaf). This tree is not necessarily balanced. 

Take for example sorting algorithms. To determine the lower bound, you need to ask a few 
questions: 

1. What is the minimum number of leaves any such tree must have? 
a. , since that is the number of possible combinations of sorting n numbers!n   

2. If a binary tree has K leaves, what is its height? 
a. eiling (log K)c 2  

Therefore, any sorting tree has to have depth d, . Since ,og(n!)d ≥ l og(n!) θ(n log n)l =   
we’ve shown that for any algorithm that fits into that framework, it must have a depth of (n log n)θ  
which means that the required number of operations is .(n log n)θ  
 

For more resources about Information Theoretic Lower Bounds check out the following UC 
Davis lecture video (https://www.youtube.com/watch?v=Ws7EYLT43u4) or wikipedia page 
(https://en.wikipedia.org/wiki/Information_theory). 
 
 
 
[B] Space Lower Bounds 

Space lower bounds on the required number of bits to represent each class of trees is 
obtained via information theory[A] by counting the number of trees in the class. For example, the 

https://link.springer.com/chapter/10.1007/3-540-44634-6_39
http://pages.di.unipi.it/rossano/wp-content/uploads/sites/7/2016/07/Slide.pdf
https://github.com/simongog/sdsl-lite
https://www.youtube.com/watch?v=Ws7EYLT43u4
https://courses.csail.mit.edu/6.851/spring12/lectures/
https://cs.uwaterloo.ca/~imunro/cs840/Notes16/SuccinctDS.pdf
https://en.wikipedia.org/wiki/Information_theory


number of n-node binary trees is known to be the nth Catalan number[C].  Therefore, an encoding 
of binary trees with n nodes requires at least  = number of bits.og(C )l n n logn O(1)2 −  +   
 
[C] Catalan Number 

The Catalan Numbers are a sequence of positive integers that enumerate combinatorial 
structures of different types. These vary from nonnegative paths in a plane, to triangulations of a 
convex polygon to full binary trees. Using 0-based numbering, the nth Catalan number is defined 
by: 

CCn = 1
n+1

n
2n = (2n)!

(n+1)!n! = ∏
n

k=2
k
n+k  

 
Asymptotically, Catalan numbers grow: 

~ Cn 4n
n3/2√π  

 
 
[D] Calculating Rank and Select in Constant Time 

The attached slideshow (S.D.S - Rank and Select.pdf) gives a brief overview of how Rank 
and Select can be stored in o(n) space and calculated in O(1) time. 
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